

Graph Traversals - Depth First Search ${ }^{\text {cs200 }}$自

- A connected component is the subset of vertices visited during a traversal that begins at a given vertex.
- DFS(v)
- visit node v
- for all neighbors of v // iterator
if neighbor not visited
DFS(neighbor)
\qquad
Depth first search algorithm
dfs (in v:Vertex)
mark v as visited
for (each unvisited vertex u adjacent to
v) \quad dfs (u)
- Need to track visited nodes
- Order of visiting nodes is not completely specified
- Is there a difference between directed undirected
graphs?
Which graph implementation?
cs200 Gmphs

Iterative DFS
dfs(in v:Vertex) s - stack for keeping track of active vertices s.push(v) mark v as visited while (!s.isEmpty()) \{ if (no unvisited vertices adjacent to the vertex on top of the stack) \{ s.pop() $\backslash 1$ backtrack else \{ select unvisited vertex u adjacent to vertex on top of the stack s.push(u) mark u as visited \}

BFS

- Similar to level order tree traversal
- DFS is a last visited first explored strategy - BFS is a first visited first explored strategy

- Reachability
- v is reachable from u
- if there is a (directed) path from u to v
- solve using BFS or DFS
- Transitive Closure (G*)
- G^{*} has edge from u to v if v is reachable from u.

Graph Traversal

- Properties of BFS and DFS:
- Visit all vertices that are reachable from a given vertex
- Therefore DFS(v) and BFS(v) visit a connected component
- Computation time for DFS, BFS for a connected graph: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

CS200-Graphs

Graphs Describing Precedence

- Examples:
- prerequisites for a set of courses
- dependencies between programs
- Edge from a to b indicates a should come before b

CS200 - Graphs

- DAG: Directed Acyclic Graph
- Topological sort: listing of nodes such that if (a, b) is an edge, a appears before b in the list
- Is a topological sort unique?

B. No

orevereno

Graphs Describing Precedence

- Want an ordering of the vertices of the graph that respects the precedence relation
- Example: An ordering of CS courses
- The graph does not contain cycles.

A directed graph without cycles

Topological Sort - Algorithm
topsortl (in G:Graph)
n= number of vertices in G
for (step $=1$ through n)
select a vertex v that has no successors
aList.add(first_available_loc, v)
Delete from G vertex v and its edges
return aList
Algorithm relies on the fact that in a DAG there is always a vert
that has no successors


```
Topological Sort - Algorithm 2 
topSort2( in theGraph:Graph):List
    s.createStack()
    for (all vertices v in the graph theGraph)
        if (v has no predecessors)
            s.push(v)
        Mark v as visited
    while (!s.isEmpty())
    if (all vertices adjacent to the vertex on top of the
    stack have been visited)
            v = s.pop()
            aLlist.add(1, v)
        else
            Select an unvisited vertex u adjacent to vertex
on
    top of the stack
    s.push(u)
    Mark u as visited
return alist CS200-Graphs
```


CS200-Graphs

- A rooted tree is a tree in which one vertex has been designated as the root and every edge is directed away from the root

CS200 - Graphs
Trees as Graphs

- Tree: an undirected connected graph that
has no simple circuits.
Theorem 10-2-1
An undirected graph is a tree iff there is a
unique simple path (no repeated vertices)
between any two vertices.
cs200 - Graphs

When is a graph a Tree? +

- Can explicitly check that the graph is connected and has no cycles. (How?)
- We need an alternative characterization

When is a graph a Tree?

Theorem 10-2-2

- A connected undirected graph with n vertices must have at least $\mathrm{n}-1$ edges (PROOF: by induction on the number of vertices)

When is a graph a Tree? :
Theorem 10-2-4

- A connected undirected graph that has n vertices and more than n-1 edges must contain a cycle.
- Proof: Let G be a connected undirected graph with n vertices and n -1 edges without any cycle. If we add one edge between any pair of vertices, this will be an additional path between that pair. That will form a cycle.

Minimum Spanning Tree

- Minimum spanning tree
- Spanning tree minimizing the sum of edge weights
- Example: Connecting each house in the neighborhood to cable
- Graph where each house is a vertex.
- Need the graph to be connected, and minimize the cost of laying the cables.

- Idea: incrementally build spanning tree by adding the least-cost edge to the tree
- Weighted graph
- Find a set of edges
- Touches all vertices
- Minimal weight
- Not all the edges may be used

Implementing Prim's Algorithm
C5200宜

- Each node not in the tree has an attaching cost - the weight of the smallest edge that connects it to the forming tree (infinity if no such edge exists).
- At each iteration, we retrieve the node with the smallest attaching cost and update the attaching cost of its neighbors.
- Can use a priority queue! (need to add a method for updating priorities).

- Set of choices at each step
- Select local optimum
- Make the choice that is best locally
- Some greedy algorithms lead to global optimum solutions
- You can learn in a later algorithms class which algorithms do. Book:
Cormen,Rivest,Leiserson
"Introduction to Algorithms"

Eulerian paths/circuits

- Eulerian path: a path that visits each edge in the graph
- Eulerian circuit: a cycle that visits each edge in the graph
- Is there a simple criterion that allows us to determine whether a graph has an Eulerian circuit or path?

river bank A

river bank B

Is it possible to travel across every bridge without crossing any bridge more than once?
http://yeskarthi.wordpress.com/2006/07/31/euler-and-the-bridges-of-konigsberg

Theorems about
Eulerian Paths \& Circuits

- Theorem: A connected multigraph has an Euler path iff it has exactly two vertices of odd degree.
- Theorem: A connected multigraph with at least two vertices has an Euler circuit iff each vertex has an even degree.
- Demo:
http://www.utc.edu/Faculty/Christopher-Mawata/ petersen/lesson12.htm

- A Hamiltonian path/circuit: path/circuit that visits every vertex exactly once.
- Defined for directed and undirected graphs

- Hamiltonian Circuit: path that begins at vertex v, passes through every vertex in the graph exactly once, and ends at v .
- http://www.utc.edu/Faculty/Christopher-Mawata/ petersen/lesson12b.htm

Hamiltonian Paths/Circuits

- Is there an efficient way to determine whether a graph has a Hamiltonian circuit?
- NO!
- This problem belongs to a class of problems for which it is believed there is no efficient (polynomial running time) algorithm.

The Traveling Salesman Problem
TSP: Given a list of cities and their pairwise

13,509 cities and towns in the US that have more than 500 resic http://www.tsp.gatech.edu/

Using Hamiltonian Circuits

- Examine all possible Hamiltonian circuits and select one of minimum total length
- With n cities..
- ($\mathrm{n}-1$)! Different Hamiltonian circuits
- Ignore the reverse ordered circuits
- ($\mathrm{n}-1$)! $/ 2$
- With 50 cities
- $12,413,915,592,536,072,670,862,289,047,373,3$ 75,038,521,486,354,677,760,000,000,000 routes

http://www.dominoartwork.com/optart.html

Chromatic number

C200宜安家
－The least number of colors needed for a coloring of this graph．
－The chromatic number of a graph G is denoted by $\chi(\mathrm{G})$

－The chromatic number of a planar graph is no greater than four

