
1 

Graph Traversal 

A B C D 

E F G H 

I J K L 

M N O P 

CS200 - Graphs 

Graph Traversals – Depth First Search 

n  A connected component is the subset of 
vertices visited during a traversal that begins at 
a given vertex. 

n  DFS(v)
q  visit node v
q  for all neighbors of v     // iterator

if neighbor not visited
 DFS(neighbor)

CS200 - Graphs 

Depth First Search 

A B C D 

E F G H 

I J K L 

M N O P 

CS200 - Graphs 

Graph Traversal 
Depth First Search (DFS) 

dfs(in v:Vertex)!
!mark v as visited !
!for (each unvisited vertex u adjacent to 
v)!
! !dfs(u)!


n  Need to track visited nodes 
n  Order of visiting nodes is not completely specified 
n  Is there a difference between directed undirected 

graphs? 
n  Which graph implementation? 



Depth first search algorithm 

CS200 - Graphs 



2 

Iterative DFS 
dfs(in v:Vertex) 

s – stack for keeping track of active vertices
s.push(v)
mark v as visited
while (!s.isEmpty())  {
 if (no unvisited vertices adjacent to the vertex  
on top of the stack) {
 s.pop()  \\ backtrack
 else {
  select unvisited vertex u adjacent to vertex on top of 
  the stack
  s.push(u)
  mark u as visited
 }
}
 
 


CS200 - Graphs 

5 

4 

0 1 2 3 

Graph Traversal – 
Breadth First Search (BFS) 

A B C D 

E F G H 

I J K L 

M N O P 

Breath First Search 

CS200 - Graphs 

BFS 

n  Similar to level order tree traversal 
n  DFS is a last visited first explored strategy 
n  BFS is a first visited first explored strategy 

CS200 - Graphs 

BFS 
bfs(in v:Vertex)!
!q – queue of nodes to be processed!
!q.enque(v)!
!mark v as visited!
!while(!q.isEmpty()) {!
! !w = q.dequeue()!
! !for (each unvisited vertex u adjacent to w) {!
! ! !mark u as visited!
! ! !q.enqueue(u)!
! !}!
!}!



CS200 - Graphs 



3 

Trace this example 

5 

4 

0 
1 2 3 

A B C D 

E F G H 

I J K L 

M N O P 

bfs(in v:Vertex)!
!q – queue of nodes!
!q.enque(v)!
!mark v as visited!
!while(!q.isEmpty()) {!
! !w = q.dequeue()!
! !for (each unvisited vertex 

! ! !u adjacent to w) {!
! ! !mark u as visited!
! ! !q.enqueue(u)!
! !}!

!}!


CS200 - Graphs 

Graph Traversal 

n  Properties of BFS and DFS: 
q  Visit all vertices that are reachable from a given 

vertex 
q  Therefore DFS(v) and BFS(v) visit a connected 

component 

n  Computation time for DFS, BFS for a 
connected graph:  O(|V| + |E|) 

CS200 - Graphs 

Reachability 

n  Reachability 
q  v  is reachable from u 

n  if there is a (directed) path from u to v 

q  solve using BFS or DFS 
n  Transitive Closure (G*) 

q  G* has edge from u to v if v is reachable from u. 

CS200 - Graphs 

Graphs Describing Precedence 

n  Examples:   
q  prerequisites for a set of courses 
q  dependencies between programs 

n  Edge from a to b indicates a should come 
before b 

CS200 - Graphs 



4 

Graphs Describing Precedence 

Batman images are from the book “Introduction to bioinformatics algorithms” CS200 - Graphs 

Graphs Describing Precedence 

n  Want an ordering of the vertices of the graph 
that respects the precedence relation  

q  Example:  An ordering of CS courses 

n  The graph does not contain cycles.   

CS200 - Graphs 

Topological Sorting of DAGs 
n  DAG:  Directed Acyclic Graph 
n  Topological sort: listing of nodes such that if (a,b) 

is an edge, a appears before b in the list 
n  Is a topological sort unique? 

Question Is a topological sort 
unique?  
 A. Yes       
B.  No 

CS200 - Graphs 

A directed graph without cycles 

a b c 

d e f 

g a,g,d,b,e,c,f 
a,b,g,d,e,f,c 

CS200 - Graphs 



5 

Topological Sort - Algorithm 1 
topSort1(in G:Graph)!
!n= number of vertices in G!
!for (step =1 through n)!
! !select a vertex v that has no successors!
! !aList.add(first_available_loc,v)!
! !Delete from G vertex v and its edges !
!return aList!

Algorithm relies on the fact that in a DAG there is always a vertex 
that has no successors 

CS200 - Graphs 

Topological Sort - Algorithm 1 

topSort1(in G:Graph)!
!n= number of vertices 
in G!
!for (step =1 through n)!
! !select a vertex v 
that has no successors!
!
!
aList.add(first_availab
le_loc,v)!
! !Delete from G 
vertex v and its edges !
!return aList!

a b c 

d e f 

g f c e b d g a 
CS200 - Graphs 

Algorithm 2: Example 2 

A B C 

D E F 

G H 

I 
I H, F, C, G, B, E, D, A, 

CS200 - Graphs 

Topological Sort - Algorithm 2 

n  Modification of DFS:  Traverse tree using 
DFS starting from all nodes that have no 
predecessor. 

n  Add a node to the list when ready to 
backtrack. 

CS200 - Graphs 



6 

Topological Sort - Algorithm 2 
topSort2( in theGraph:Graph):List!
!s.createStack()!
!for (all vertices v in the graph theGraph) !
! !if (v has no predecessors) !
! ! !s.push(v)!
! ! !Mark v as visited!
!while (!s.isEmpty()) !
! !if (all vertices adjacent to the vertex on top of  the 
stack have been visited) !

! ! !v = s.pop()!
! ! !aLlist.add(1, v) !
! !else !
! ! !Select an unvisited vertex u adjacent to vertex 
on  
    top of the stack!

! ! !s.push(u)!
! ! !Mark u as visited!
!return aList!

 CS200 - Graphs 

Algorithm 2: Example 1 

a b c 

d e f 

g f c e b d g a 

f c 
e 

b 
d 
g 
a 

CS200 - Graphs 

Topological sorting solution 

A B C 

D E F 

G H 

I 

1/18 
10/15 11/14 

12/13 9/16 2/17 

6/7 3/8 

4/5 Red edges represent spanning tree 

CS200 - Graphs 

Topological sorting solution (cont.) 

A B C D E F G H I 

1/18 10/15 11/14 12/13 9/16 2/17 6/7 3/8 4/5 

A B C 

D E F 

G H 
I 

1/18 
10/15 11/14 

12/13 9/16 2/17 

6/7 
3/8 

4/5 

CS200 - Graphs 



7 

Trees as Graphs 

n  Tree: an undirected connected graph that 
has no cycles. 

 

A B C D 

E F G H 

I J K L 

M N O P 

CS200 - Graphs 

Rooted Trees 

n  A rooted tree is a tree in which one vertex 
has been designated as the root and every 
edge is directed away from the root 

CS200 - Graphs 

Example: Build rooted trees. 

 
A B C D 

E F G H 

I J K L 

M N O P 

Question: Which node CANNOT be a 
root of this tree?  
A. Node E   B. Node G   C. Node E  D. 
None 

CS200 - Graphs 

Trees as Graphs 

n  Tree: an undirected connected graph that 
has no simple circuits. 

 

CS200 - Graphs 



8 

Theorem 10-2-1 

An undirected graph is a tree iff there is a 
unique simple path (no repeated vertices) 
between any two vertices. 

 

CS200 - Graphs 

When is a graph a Tree? 

n  Can explicitly check that the graph is 
connected and has no cycles.  (How?) 
 

n  We need an alternative characterization 
   

CS200 - Graphs 

When is a graph a Tree?:  
Theorem 10-2-2 
n  A connected undirected graph with n vertices 

must have at least n-1 edges (PROOF: by 
induction on the number of vertices) 

CS200 - Graphs 

When is a graph a Tree?:  
Theorem 10-2-3 
n  A connected undirected graph that has n 

vertices and exactly n-1 edges cannot contain a 
cycle (PROOF: by contradiction with previous 
statement) 

CS200 - Graphs 



9 

When is a graph a Tree? :  
Theorem 10-2-4 
n  A connected undirected graph that has n 

vertices and more than n-1 edges must contain 
a cycle. 

n  Proof: Let G be a connected undirected graph with n vertices and 
n-1 edges without any cycle. If we add one edge between any pair 
of vertices, this will be an additional path between that pair. That will 
form a cycle.   

CS200 - Graphs 

When is a graph a Tree? 

n  Conclusion:  A connected graph with n 
vertices and n-1 edges is a tree. 

n  In order to check if a graph is a tree we need 
to check that it is connected and count the 
number of edges and vertices. 

CS200 - Graphs 

Spanning Trees 

n  Spanning tree:  A sub-graph of a connected 
undirected graph G that contains all of G’s 
vertices and enough of its edges to form a tree. 
 

n  How to get a spanning tree:  
q  Remove edges until you get a tree. 
q  Add edges until you have a spanning tree 

CS200 - Graphs 

Spanning Trees - DFS algorithm 

dfsTree(in v:vertex)!
!Mark v as visited!
!for (each unvisited vertex u adjacent to v)!
! !Mark the edge from u to v!
! !dfsTree(u)!

CS200 - Graphs 



10 

Spanning Tree – 
Depth First Search Example 

A B C D 

E F G H 

I J K L 

M N O P 

CS200 - Graphs 

Example 

n  Suppose that an airline must reduce its flight schedule to save money. If its 
original routes are as illustrated here, which flights can be discontinued to 
retain service between all pairs of cities (where it may be necessary to 
combine flights to fly from one city to another?) 

Seattle 
Chicago 

Detroit SF 

LA 

San Diego 

Denver 

Dallas 

St. Louis 

Atlanta 

Washington D.C. 
NYC 

Boston 

Bangor 

CS200 - Graphs 

Minimum Spanning Tree 

n  Minimum spanning tree 
q  Spanning tree minimizing the sum of edge 

weights 

n  Example: Connecting each house in the 
neighborhood to cable  
q  Graph where each house is a vertex.   
q  Need the graph to be connected, and minimize the 

cost of laying the cables. 

CS200 - Graphs 

Prim’s Algorithm 

n  Idea: incrementally build spanning tree by 
adding the least-cost edge to the tree 
q  Weighted graph 
q  Find a set of edges  

n  Touches all vertices 
n  Minimal weight 
n  Not all the edges may be used  

CS200 - Graphs 



11 

g e f 

d i 

c b a 

h 

4 

8 7 

9 

10 

7 4 

2 

11 

8 7 

1 2 

6 

g 

d 

f e 

i 

c b 

h 

a 

Prim’s Algorithm: Example  

 {(d,c),(c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a) } CS200 - Graphs 

Start from A 
CS200 - Graphs 

Prim’s Algorithm 
prims(in: G=(V,E):Graph)!
!//VT – current vertices in spanning tree!
!//ET – edges belonging to the spanning tree!

!VT = {w}  // w is an arbitrarily chosen vertex!
!ET = ϕ  //spanning tree contains no vertices 
initially   !

!for i = 1 to |V| - 1 do!
! !find a minimum-weight edge e=(u,v) among 
edges that !connects a vertex in VT with a 
vertex in V – VT!

! !add v to VT!
! !add e to ET!
!return ET!

CS200 - Graphs 

Implementing Prim’s Algorithm 

n  Each node not in the tree has an attaching 
cost – the weight of the smallest edge that 
connects it to the forming tree (infinity if no 
such edge exists). 

n  At each iteration, we retrieve the node with 
the smallest attaching cost and update the 
attaching cost of its neighbors. 

n  Can use a priority queue!  (need to add a 
method for updating priorities). 

CS200 - Graphs 



12 

Greedy Algorithms 

n  Set of choices at each step 
q  Select local optimum 

n  Make the choice that is best locally 

n  Some greedy algorithms lead to global 
optimum solutions 
q  You can learn in a later algorithms class which 

algorithms do. Book: 
    Cormen,Rivest,Leiserson 
    “Introduction to Algorithms” 

Bridges of Konigsberg Problem 

http://yeskarthi.wordpress.com/2006/07/31/euler-and-the-bridges-of-konigsberg/ 

Euler 

Is it possible to travel across every bridge 
without crossing any bridge more than once? 

Eulerian paths/circuits 

n  Eulerian path:  a path that visits each edge in 
the graph 

n  Eulerian circuit: a cycle that visits each edge in 
the graph 

n  Is there a simple criterion that allows us to 
determine whether a graph has an Eulerian 
circuit or path? 

Example: Does any graph have  
an Euler circuit? 

48 

a b 

c d 

e 

a b 

c d e 

a b 

c d 

e 



13 

Example: Does any graph have  
an Euler path? 

49 

a b 

c d 

e 

a b 

c d e 

a b 

c d 

e 

Example: Does any graph have an Euler 
circuit? 

50 

a b 

c d 
a b 

d e 

f 
c 

g 

a b 

c d 

Theorems about  
Eulerian Paths & Circuits 
n  Theorem:  A connected multigraph has an 

Euler path iff it has exactly two vertices of odd 
degree. 

n  Theorem:  A connected multigraph with at 
least two vertices  has an Euler circuit iff each 
vertex has an even degree. 

q  Demo: 
http://www.utc.edu/Faculty/Christopher-Mawata/
petersen/lesson12.htm 

 
 

Hamiltonian Paths/Circuits 

n  A Hamiltonian path/circuit: 
path/circuit that visits every 
vertex exactly once. 

n  Defined for directed and 
undirected graphs 



14 

Circuits (cont.) 

n  Hamiltonian Circuit: path that begins at vertex 
v, passes through every vertex in the graph 
exactly once, and ends at v. 
q  http://www.utc.edu/Faculty/Christopher-Mawata/

petersen/lesson12b.htm  

Does any graph have a Hamiltonian circuit or a 
Hamiltonian path?  

54 

a b 

c d 

e 

a b 

c d 

a b 

c d 

e 

Hamiltonian Paths/Circuits 

n  Is there an efficient way to determine whether 
a graph has a Hamiltonian circuit? 
q  NO! 
q  This problem belongs to a class of problems for 

which it is believed there is no efficient (polynomial 
running time) algorithm. 

The Traveling Salesman Problem 

13,509 cities and towns in the US that have more than 500 residents 
http://www.tsp.gatech.edu/ 

TSP:  Given a list of cities and their pairwise 
distances, find a shortest possible tour that 
visits each city exactly once. 



15 

Using Hamiltonian Circuits 

n  Examine all possible Hamiltonian circuits and 
select one of minimum total length 

n  With n cities.. 
q  (n-1)! Different Hamiltonian circuits  
q  Ignore the reverse ordered circuits 
q  (n-1)!/2 

n  With 50 cities 
n  12,413,915,592,536,072,670,862,289,047,373,3

75,038,521,486,354,677,760,000,000,000 
routes 

57 

TSP 

n  How would a greedy algorithm for TSP work? 

71,009 Cities in China 

Local search: construct 
a solution and then 
modify it to improve it 

TSP Art 

http://www.dominoartwork.com/optart.html http://www.cgl.uwaterloo.ca/~csk/projects/tsp/ 



16 

Planar Graphs 

n  You are designing a 
microchip – connections 
between any two units 
cannot cross 

  

http://www.dmoma.org/ 

Planar Graphs 

n  You are designing a 
microchip – connections 
between any two units 
cannot cross 

n  The graph describing the 
chip must be planar 

  

planar 

non-planar 

http://en.wikipedia.org/wiki/Planar_graph 

Is this graph planar? 

63 

Chip Design 

n  You want more than 
planarity:  the lengths of 
the connections need to be 
as short as possible (faster, 
and less heat is generated) 

  

http://www.dmoma.org/ 



17 

Graph Coloring 

n  A coloring of a simple graph is the 
assignment of a color to each vertex of the 
graph so that no two adjacent vertices are 
assigned the same color 

65 

Map and graph 

66 

B 

A 

C 
D 

E 

F 
G 

A 

B 

C 
D 

G E 

F 

Chromatic number 

n  The least number of colors needed for a 
coloring of this graph. 

n  The chromatic number of a graph G is 
denoted by χ(G) 	


67 

The four color theorem 

n  The chromatic number of a planar graph is no 
greater than four 

68 



18 

Example 

69 


