
1

 CS200: Tables, Priority
Queues and Heaps

Prichard Ch. 12

CS200 - Hash Tables 2

Table Implementations

Can we build a faster data structure?

Search Add Remove

Sorted
array-based

O(log n) O(n) O(n)

Unsorted
array-based

O(n) O(1) O(n)

Balanced
Search
Trees

O(log n) O(log n) O(log n)

CS200 - Hash Tables 3

Tables in O(1)

Suppose we have a magical address calculator…

tableInsert(in: newItem:TableItemType)!
!i = index that the address calculator gives you
for !newItem’s search key!
!table[i] = newItem!

CS200 - Hash Tables 4

Hash Functions and Hash Tables

Magical address calculators exist:
They are called hash functions

hash
table

CS200 - Hash Tables 5

2

Hash Table: nearly-constant-time

n  A hash table is a dictionary in which the address
of the data is determined directly from the key…
which provides near constant time access!

n  location of data determined from the key
q  implemented using vector / array
q  index computed from key using a hash code

n  close to constant time access if nearly unique
mapping from key to index
q  cost: extra space for unused slots

CS200 - Hash Tables 6

Hash Table: examples

q  key is string of 3 letters
n  array of 17576 (263) entries, costly in space
n  hash code: letters are “radix 26” digits
 a/A -> 0, b/B -> 1, .. , z/Z -> 25,
n  Example: Joe -> 9*26*26+14*26+4

q  key is student ID or social security #
n  how many likely entries?
n  what hash code?

CS200 - Hash Tables 7

Hash Table Issues

n  Underlying data-structure
q  fixed length array, usually of prime length
q  each slot contains data

n  Addressing
q  map key to slot index (hash code)
q  use a function of key

n  e.g., first letter of key
n  What if we add ‘capybara’?

q  collision with ‘coati’

bat
coati
dikdik

hyrax

loris

CS200 - Hash Tables 8

Simple Hash Functions
Credit card numbers

q  3: travel/entertainment cards (e.g. American Express and Diners
Club)

n  Digits three and four are type and currency
n  Digits five through 11 are the account number

q  4: Visa
n  Digits two through six are the bank number
n  Digits seven through 12 or seven through 15 are the account number

q  5: Mastercard
n  Digits two and three, two through four, two through five or two

through six are bank number
n  Till digits 15 are the account number
n  Digit 16 is a check digit

CS200 - Hash Tables 9

3

Hash Function Maps Key to Address

n  Characteristics
q  uniform distribution, fast to compute
q  return an integer corresponding to slot index

n  within array size range
q  equivalent objects => equivalent hash codes

n  what is equivalent? Depends on the application, e.g. upper
and lower case letters equivalent

 “Joe” == “joe”

n  Perfect hash function: guarantees that every
search key maps to unique address

n  takes enormous amount of space
n  cannot always be achieved (e.g., unbounded length strings)

CS200 - Hash Tables 10

Hash Function Computation

n  Strategies:
q  Divide hash value by size of the array. (So table

should be of prime length.)
q  Typical functions add together positions in key and

weight their values.
n  Functions on positive integers

q  Selecting digits (e.g., select a subset of digits)
q  Folding: add together digits or groups of digits
q  Modulo arithmetic: divide by table size

CS200 - Hash Tables 11

What is the hash function if
selecting digits?
n  h(001364825) = 35
n  h(9783667) = 37

n  h(225671) = ?
A.  39
B.  31
C.  61

CS200 - Hash Tables 12

Hash function: Selecting digits

n  h(001364825) = 35
q  Select the fourth and last digits

n  Simple and fast
q  Does not evenly distribute items

13 CS200 - Hash Tables

4

Hash function: Folding

n  Suppose the search key is a 9-digit ID.

n  Sum-of-digits:
 h(001364825) = 0 + 0 + 1 + 3 + 6 + 4 + 8 + 2 + 5

 satisfies: 0 <= h(key) <= 81

n  Grouping digits: 001 + 364 + 825 = 1190

0 <= h(search key) <=3*999=2997

CS200 - Hash Tables 14

What is the hash function using
folding?

n  h(001364825) = 29
n  h(119239200) = 27

n  h(336) = ?
A.  25
B.  12
C.  3

CS200 - Hash Tables 15

Hash Function: Folding

n  Functions on Strings
q  Convert characters to integers, multiply by base (e.g.,

32) raised to position and sum across letters using
Horner’s rule (e.g., “ABC” -> ((1 * 32 + 2) * 32 + 3))

q  Java provides a method for built-in objects:
 public int hashCode()

n  To use it to convert a word into an array of length hashSize,
	

 	

int code = word.toLowerCase().hashCode();	

	

 	

code = Math.abs(code % hashSize);

n  hashSize should be a prime number

 	

CS200 - Hash Tables 16

Impact of using prime number

17 CS200 - Hash Tables

5

Hash function data distribution

n  pick a size; compute key to any integer using
some hash code; index = (key -> integer) mod
size

n  key -> integer:
 Sum(i=0 to len-1)

 getNumericValue(string.charAt(i))*ci
q  similar to Java built-in

n  This does not work well for very long strings with
large common subsets (URL), which needs
hashing in a Web (Proxy) Cache.

CS200 - Hash Tables 18

Hash code example (cont.)

Using the Unix spelling dictionary, size = 997
q  c=1: BAD, periodic peaks
q  c=31 (java) better

CS200 - Hash Tables 19

Collisions

 Collision: two keys
map to the same
index

WHY?

CS200 - Hash Tables 20

The Birthday Problem
n  What is the minimum number of people so that

the probability that at least two of them have the
same birthday is greater than ½?

n  Assumptions:
q  Birthdays are independent
q  Each birthday is equally likely

n  pn – the probability that all people have different
birthdays

pn = 1
365
366

364
366

· · · 366� (n� 1)
366

n = 23⇤ 1� pn ⇥ 0.506

6

The Birthday Problem:
Probabilities
N (# of people) P n (Probability that at least two of the n persons

have the same birthday)
10 11.7 %
20 41.1 %
23 50.7 %
30 70.6 %
50 97. 0 %
57 99.0%
100 99.99997%
200 99.999999999999999999999999999998%
366 100%

CS200 - Hash Tables 22

Probability of Collision

n  How many items do you need to have in a
hash table so that the probability of collision
is greater than ½?

n  For a table of size 1,000,000 you only need
1178 items for this to happen!

CS200 - Hash Tables 23

Methods for Handling Collisions

n  Approach 1: Open addressing
q  probe for an empty slot in the hash table

n  Approach 2: Restructuring the hash table
q  Change the structure of the array table

CS200 - Hash Tables 24

Open addressing

n  A location in the hash table that is already
occupied
q  Probe for some other empty, open, location in

which to place the item.
q  Probe sequence

n  The sequence of locations that you examine

CS200 - Hash Tables 25

7

Open Addressing 1: Linear Probing

n  Use first char. as hash function
q  Init: ale, bay, egg, home

n  Where is
q  egg
q  ink

ale
bay

egg

home

hash code 8
n  Add

n  gift
n  age

6 empty
gift

age

0 full, 1 full, 2 empty

hash code 4

Clicker Q: During the process of linear
probing, if there is empty spot,
 A. No item found
B. There is still a chance to find the item

Open addressing: Linear Probing

n  Deletion: The empty positions created along
a probe sequence could cause the retrieve
method to stop, incorrectly indicating failure.

n  Resolution: Each position can be in one of
three states occupied, empty, or deleted.
Retrieve then continue probing when
encountering a deleted position. Insert into
empty or deleted positions.

CS200 - Hash Tables 27

Linear Probing (cont.)

n  remove
q  locate and then remove
q  bay
q  age

ale
bay

egg

home

gift

age
1

reserved

0

reserved

Clicker Q: Where does almond go?
A.  1
B.  2
C.  3

Open Addressing 1: Linear Probing

ale
bay

egg

home

gift

age
n  Clustering problem

n  keys starting with ‘a’, ‘b’, ‘c’, ‘d’
n  fighting for same open slot (3)

8

Open Addressing: Quadratic Probing

n  check

h(key) + 12, h(key) +
22, h(key) + 32,… !

n  Eliminates the primary
clustering phenomenon

n  But.. Secondary clustering:
two items that hash to the
same location have the
same probe sequence

CS200 - Hash Tables 30

Open Addressing: Double Hashing

Use two hash functions:
n  h1(key) – determines the position
n  h2(key) – determines the step size for probing

q  the secondary hash h2 needs to satisfy:
 h2(key) ≠ 0
 h2 ≠ h1 (why?)

n  Rehashing
Using more than one hash functions

CS200 - Hash Tables 31

Double Hashing

Example:

h1(key) = key mod 11
h2(key) = 7 – (key mod 7)

Insert 58, 14, 91

CS200 - Hash Tables 32

Open Addressing:
Increasing the table size
n  Increasing the size of the table: as the table

fills the likelihood of a collision increases.
q  Cannot simply increase the size of the table –

need to run the hash function again

CS200 - Hash Tables 33

9

Restructuring the Hash Table:
Hybrid Data Structures
n  elements in hash table become collections

q  elements hashing to same slot grouped together in the
collection

q  collection is a separate structure
n  e.g., ArrayList (bucket) or linked-list (separate chaining)

n  a good hash function keeps a near uniform
distribution, and hence the collections small

n  does not need special case for removal as open
addressing does

Separate Chaining Example

n  Hash function
q  first char

n  Locate
q  egg
q  gift

n  Add
q  bee?

n  Remove
q  bay?

bay

egg elk

gate

The Efficiency of Hashing

n  Consider a hash table with n items
q  Load factor α = n / tableSize
q  n: current number of items in the table
q  tableSize: maximum size of array
q  α : a measure of how full the hash table is.

n  measures difficulty of finding empty slots

n  Efficiency decreases as n increases

CS200 - Hash Tables 36

Size of Table

n  Determining the size of Hash table
q  Estimate the largest possible n
q  Select the size of the table to get the load factor

small.
q  Load factor should not exceed 2/3.

37 CS200 - Hash Tables

10

Hashing: Length of Probe Sequence

n  Average number of comparisons that a
search requires,
q  Linear Probing

n  successful

n  unsuccessful

q  Quadratic Probing and Double Hashing
n  successful

n  unsuccessful
€

1
2
1+

1
1−α

$

% &
'

()

1
2
1+

1
1−α 2()

$

%
&
&

'

(
)
)

€

−loge 1−α()
α

1
1−α

From D.E. Knuth, Searching and Sorting, Vol. 3 of The Art of Computer Programming
CS200 - Hash Tables 38

Hashing: Length of Probe Sequence

n  Chaining
q  successful: 1 + α/2
q  unsuccessful: α	

q  Note that α can be > 1

CS200 - Hash Tables 39

Traversal of Hash Tables

n  If you need to traverse your tables by the
sorted order of keys – hash tables may not
be the appropriate data structure.

CS200 - Hash Tables 40

Hash Tables in Java

public class Hashtable<K,V> extends Dictionary<K,V>
implements Map<K,V>!

public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>!

!public HashMap(int initialCapacity, float loadFactor)!

!public HashMap(int initialCapacity) //default
loadFactor: 0.75!

CS200 - Hash Tables 41

From the JAVA API: “A map is an object that maps keys to
values… The HashMap class is roughly equivalent to
Hashtable, except that it is unsynchronized and permits
nulls.” Both provide methods to create and maintain a
hash table data structure with key lookup.

