‘ CS200: Tables and Priority

Queues

Prichard Ch. 12

(CS200 - Tables and Priority Queues 1

C€S200

‘ Value Oriented Data Structures =% ==
s Tm

= Value-oriented operations are very common:
o Find John Smith’s facebook
o Retrieve the student transcript of Ruth Mui
o Register Jack Smith for an Amazon Cloud account
o Add a user to a database (e.g., Netflix database).

m To support such uses: Arrange the data to
facilitate search/insertion/deletion of an item
given its search key

(€8200 - Tables and Priority Queues

CS200 grm

Example: Table of Student Points -ﬁ-

Student Student
First Last
Name Name

001245 Jake Glen

001247 Parastoo Mahgreb 87 78
001256 Wayne Dwyer 90 96
012345 Bob Harding 45 50
022356 Mary Laing 95 97

*Each row is a record
*Each column is a field
«Student ID is the search key field

(€CS200 - Tables and Priority Queues 3

cszog_/l]
‘ Search Keys o
m am ﬂl

= In many applications the search key must be
unique to a single record

= Records should be organized to facilitate
search for an item by search key

m The search key of a record must not change
while it is in the table. Why?

(CS200 - Tables and Priori ueues




cs200 prm_
‘ T'able Records = wm

s r's s
public abstract class KeyedItem<KT extends
Comparable <? super KT>>

/ /KT is constrained to be a type that implements comparable or is a
//subclass of a type which does so

{

private KT searchKey;

public KeyedItem(KT key) {
searchKey = key; } //constructor

public KT getKey() {
return searchKey; } //accessor

}
There is no method to set the search key. Why?

(€S200 - Tables and Priority Queues 5

cs200_prm.

‘Table Record Example = wn

s E'm Tm
public class User extends KeyedItem<String> {
private String StudentID; // search key
private String firstName;
private String lastName;

€s200
‘ Table Interface o m
' s T'm
public interface TableInterface<T extends KeyedItem<KT>,
KT extends Comparable <? super KT>> {

// Precondition for all operations:

// No two items of the table have the same search key.

// The table's items are sorted by search key

// (actually not required)

public boolean tableIsEmpty();

// Determines whether a table is empty.

// Postcondition: Returns true if the table is empty;
// false otherwise

public int tableLength();
// Determines the length of a table.
// Postcondition: Returns number of items in the table.

€5200 - Tables and Priority Queues 7

public User(String userID, String _firstName, ..) {
super (userID);//Why is super used here?
firstName = _firstName;
}//constructor
(€8200 - Tables and Priority Queues 6
€200 Brm
‘ Table Interface (cont.) = wm
s r's s

public void tableInsert(T newItem) throws
TableException;

// Inserts a record into a table in its proper sorted
// order according to the item's search key.

// Precondition: The record’s (newltem’s) search key
// must be unique in the table.

// Postcondition: If successful, newlItem is in its

// proper order in table.

// Otherwise, throw TableException.

public boolean tableDelete (KT searchKey);
// Deletes a record with search key KT from table.
// Precondition: searchKey is the search key of item
// Postcondition: If there is a record with KT in the
// table, the item was deleted and method returns
// true. Otherwise, table is unchanged; return false.

€5200 - Tables and Priority Queues 8




cs200 Brm
[= ]

| Table Interface (cont.) =

T En

public KeyedItem tableRetrieve (KT searchKey);
// Retrieves a record with a search key KT from table.
// Precondition: searchKey is search key for record to
// be retrieved.
// Postcondition: If the retrieval was successful,

// table record with search key matching KT is returned.

// If no such record exists, return null.

} // end TableInterface

€5200 - Tables and Priority Queues

‘ Reusing Data Structures

€S200
™

Possible Implementations

= Array sorted by search key
m Linked List sorted by search key

= Binary search tree

T En

(€CS200 - Tables and Priority Queues

€200 Brm

xu

Performance of Table Implementatiorcfé%u TEm
o Ew wm

Search Add Remove

Sorted array- |O(log n) | O(n) O(n)

based

Unsorted O(n) o(1) O(n)

array-based

BST* O(logn) |O(logn) |O(log n)
[O(n)] [O(n)] [O(n)]

* Worst case behavior in []

(CS200 - Tables and Priority Queues




. . €S200 Brm
‘ Priority Queues = =

s E'm Im
= Characteristics
o Items are associated with a value: priority

u Provide access to one element at a time - the one
with the highest priority

m Uses
o Operating systems

o Network management

= Real time traffic usually gets highest priority when
bandwidth is limited

(€S200 - Tables and Priority Queues 13

€S200 Brm

| Priority Queue ADT Operations == ==

oa s =m

1. Create an empty priority queue
createPQueue ()

2. Determine whether empty
pqIsEmpty () :boolean

3. Insert new item

paInsert(in newItem:PQItemType) throws
PQueueException

4. Retrieve and delete the item with the highest priority
pgDelete( ) :PQItemType

(€8200 - Tables and Priority Queues 14

‘ . €200 Brm
— [ ]
PQ — Array Implementation .
30 3 20 | ... | 95 |958| 96 |99.2| .........
size 0 1 29 MAX_QUEUE-1

m ArrayList ordered by priority
o Find the correct position for the insertion

o Shift the array elements to make room for the new
item

€5200 - Tables and Priority Queues 15

‘PQ — Reference-based Implementatiorz; :[;_’;]_;ﬁ

pgHead

0= 992| O==> 96 | O==> 958| @8> = = 0> 3

m Reference-based implementation

o Sorted in descending order
= Highest priority value is at the beginning of the linked list
=» pgDelete returns the item that psHead references and
changes pgHead to reference the next item.
= pglnsert must traverse the list to find the correct position
for insertion.

€5200 - Tables and Priority Queues 16




| PQ — BST Implementation

cs200_prm.
’ xu

s Em rE

m Binary search tree

o What is the highest
value of the nodes?

o Removing is easy
= It has at most one child

o You can use a balanced

° variation of the binary
search tree.

m Other options?

(€S200 - Tables and Priority Queues

. . C€S200
‘ Heap - Definition - wm
s E'm Tm
» A maximum heap (maxheap) is a complete
binary tree that satisfies the following:
o Itis an empty tree
or it has the heap property:

= Its root contains a key greater or equal to the keys of its children
= lts left and right subtrees are also heaps

m Implications of the heap property:
a The root holds the maximum value (global property)

o Values in descending order on every path from root to
leaf

m Heap is NOT a binary search tree.

(€8200 - Tables and Priority Queues 18

| Examples

@ @
S &N 5D (2s)
OO0 &
(15)
Satisfies heap (10)

ropert
gonfple:::- Satisfies heap
property
Not complete

cs200 grm
y xu
s r's s

(30)

(15)  (20)
Q05D (2s)
Does not

satisfy heap

property
Not complete

€5200 - Tables and Priority Queues

19

CSZOC’J_/IZI\\
| Heap ADT o
I Em TE
createHeap() // create empty heap

heapIsEmpty () :boolean
// determines if empty

heapInsert(in newItem:HeapItemType)
throws HeapException
// inserts newlItem based on its search key.
// Throws exception if heap is full

heapDelete( ) :HeapItemType
// retrieves and then deletes heap’s root
// item which has largest search key

€5200 - Tables and Priority Queues 20




| ArrayList Implementation

C€S200

T En

50

N}

20
25
10

15

Go (9 (s :

5 6

€5200 - Tables and Priority Queues

C€S200

| ArrayList Implementation

50

N

20
25
10

w

IS

3}

15

T En E

€5200 - Tables and Priority Queues

| ArrayList Implementation

m Traversal items:
o Root at position 0
o Left child of position i at position 2i+1
o Right child of position i at position 2(i+1)
o Parent of position i at position | (i-1)/2]

C€S200

=

s e'm I

(€CS200 - Tables and Priority Queues

C€S200

‘ Heap Operations - heapInsert == =

= Step 1: put a new value into first open position
(maintaining completeness)

= Step 2: percolate values up
o Re-enforcing the heap property

o Swap with parent until in the right place

(CS200 - Tables and Priority Queues




. . cs200 prm_
Insertion into a heap (Insert 15) =% w

(30 (2050

. . cs200 prm_
Insertion into a heap (Insert 15) =% w

€5200 - Tables and Priority Queues

Insert 15
Trickle up
Trickle up
(€S200 - Tables and Priority Queues 25
Cs200 BrM
| Heap Insert Pseudocode wn
o'n a'w w'm

// insert newItem into bottom of tree

items[size] = newItem
// percolate new item up to appropriate spot

place = size

parent = (place-1)/2
while (parent >= 0 and items[place] > items[parent])

swap items[place] and items[parent]
place = parent

parent = (place-1)/2

}

increment size

Part of the insert operation is often called siftUp

€5200 - Tables and Priority Queues

. CS200 orm
— wn
‘Heap operations — heapDelete o

= Step 1: always remove value at root (Why?)

m Step 2: substitute with rightmost leaf of bottom level
(Why?)

m Step 3: percolate/sift down
u Swap with maximum child as necessary

€5200 - Tables and Priority Queues




| Deletion from a heap

(10)

Delete 10

€S200
™

Place last node in root

Trickle down

€5200 - Tables and Priority Queues

cs200 Brm

‘ Deletion from a heap L
s Em T

€5200 - Tables and Priority Queues 30

heapDelete Pseudocode

// return the item in root

rootItem = items[0]

//copy item from last node into root
items[0] = items[size-1]

size--

// restore the heap property
heapRebuild(items, 0, size)

return rootItem

cs200 grm
L
s r's s

€5200 - Tables and Priority Queues

€200 Brm

heapRebuild Pseudocode o wm
IEEE T'm

heapRebuild(inout items:ArrayType, in root:integer,
in size:integer)
if (root is not a leaf) {
child = 2 * root + 1 // left child
if (root has right child) {
rightChild = child + 1
if (items[rightChild].getKey() >
items[child].getKey(?) {
child = rightChild

}

} // larger child

if (items[root].getKey() < items[child].getKey()) {
swap items[root] and items[child]
heapRebuild(items, child, size)

heapRebuild is also called siftDown

(CS200 - Tables and Priority Queues 32




‘ Heap versus BST for PriorityQueue = ==

r'mEm rm

= BST can also be used to implement a priority
queue

= How does worst case complexity compare?
= How does average case complexity compare?

= What if you know the maximum needed size
for the PriorityQueue?

(€8200 - Tables and Priority Queues 34

‘ . cs200 prm_
- . m
Array-based Heaps: Complexity —_=x s
Average Worst Case
insert O(log n) O(log n)
delete O(log n) O(log n)
(€S200 - Tables and Priority Queues 33
. .. cs200 prm
| Small number of priorities wn
rEEE T'm

= A heap of queues with a queue for each

priority value.

€S200 - Tables and

Priority Queues

€S200 BIm
m

‘ HeapSort = ¥
= Algorithm
o Insert all elements (one at a time) to a heap

o lteratively delete them
= Removes minimum/maximum value at each step

= Computational complexity?

(CS200 - Tables and Priori ueues




. . . C;SZOO €S200
‘ Repeat n times of insert operatlongff} ‘ HeapSort __{_-ipii

m om

= Alternative method (in-place):

o Create a heap out of the input array:
= Consider the input array as a complete binary tree
= Create a heap by iteratively expanding the portion of the
tree that is a heap
o Start from the leaves, which are semi-heaps
o Move up to next level calling heapRebuild with each parent

o lteratively swap the root item with last item in
unsorted portion and rebuild

” (€S200 - Tables and Priority Queues 38

| Build initial tree _ﬂ’f}- | Transform tree into a heap __{_-j{_’i_p}-

]
|6|3|5|9|2|0 for (index = n -1 down to 0)
- Begin with the root //Assertion: the tree rooted at index is a semiheap

heapRebuild(anArray, index x)
//Assertion: the tree rooted at index is a heap

= Left to right down this tree

m Call heapRebuild() on the leaves from right
to left

= Move up the tree

(CS200 - Tables and Priority Queues 40




6]a]s[9]2]1]

6]aw0fs]2]s]

s and Priority Queues

o

6]or0fs]2]s]

A

s and Priority Queues

i

tofolefsfz]s]

A

11



cs200 Brm
[= ]

T En

5

tofolefsfz]s]

cs200 Brm

Do we need n steps? = wm
s Tm

After transforming the array into a he&fz":in

m Heapsort partitions the array into two regions
o Heap region

o sorted region
Sorted (Largest
H|1:_Ap elenrents in array)

0 1 2 3 last last+1 n-1

|
|
|
|
|
J
9 2 10
/N NN
No Child No Child No Child
les and Priority Queues
| Sorted : n-1 (5~) e

(ofofefs]2]s]
RIEIEIERERY
HEAP Sorted
ofofels]2] BN
HEAP Sorted
slofels]2]
HEAP Sorted

CS200 - Tables an ity Queues

d Priority Q

12



| Sorted: n-2 (4~)

s wm
(o] e[efs]z]s]
[o]s]el=]-] N
JIEI.
HEOE sores
HODOEE.
8200 - Tables and Priority Queues 49
‘ CSZOQ_’:L
Sorted: n-4 (2~) o,

(o] efefs]z]s]

E

HEAP| 5

i

HEAP 5

Sorted

Sorted

Sorted

(€CS200 - Tables and Priority Queues

s Em T
[o[e]e]a]z]s]
DB
8200 - Tables and Priority Queues 50
CSZO?_’:L
‘ Sorted: n-5 (1~) o,

(o] efefs]z]s]
rees[2] | oo

(CS200 - Tables and Priority Queues

13



| Sorted :n-6 (0~)

cs200 Brm

€S200
‘ HeapSort Pseudocode ™

s E'm Tm
heapSort (ourItems:ArrayList, n:integer)
// First step: build heap out of the input array
for (index = n - 1 down to 0) {
// Invariant: the tree rooted at index is a
// semiheap
// semiheap: tree where the subtrees of the
// root are heaps
heapRebuild(ourItems, index, n)
// The tree rooted at index is a heap

€5200 - Tables and Priority Queues 54

wn  am
ﬂ::h m
(o] e[efs]z]s]
e 2] | s
I -
rntrosot [
8200 - Tables and Priority Queues 53
CSZOQ_’:L
| HeapSort Pseudocode = =
mnn wm

heapSort(ourItems:ArrayList, n:integer)

for (index = n-1 down to 0) {
heapRebuild(ourItems, index, n)

}

last = n -1 // initialize the regions

for (step = 1 through n) {
swap ourItems[0] and ourItems[last]
decrement last
heapRebuild(ourItems, 0, last) }

Heap Sorted (largest elements in array)
A
~ Y4

N
n-1

0 1 cees last last+l sae -

(€CS200 - Tables and Priority Queues

14



