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CS200: Recurrence Relations
and the Master Theorem

Rosen Ch. 8.1 -8.3

) como
Recurrence Relations: =

An Overview

» What is a recurrence relation?
o A recursively defined sequence

m Example
o Arithmetic progression: a, a+d, a+2d, ..., a+nd
| aO =da

ma=a,,+d

(€8200 - Recurrence Relations 2

‘ €5200 Brm
Formal Definition Sl

A recurrence relation for the sequence {an} is an equation
that expresses a, in terms of one of more of the previous
terms of the sequence, namely, a,.4,,...a,_,, for all integers
n with n = n, where n, is a nonnegative integer.

m Sequence = Recurrence relation + Initial
conditions (“base case”)

m Example: a,=2a,,+1, a,=1

m Pg. 158 in Rosen

(€8200 - Recurrence Relations

€5200 prm
Compound Interest wu m

EnEm wm

= You deposit $10,000 in a savings account that

yields 10% yearly interest. How much money

will you have after 30 years? (b is balance, r is
rate)

b =b,_,+rb,  =(1+r)"b,

(€8200 - Recurrence Relations 4
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‘ Modeling with Recurrence Fe g
= Suppose that the number of bacteria in a
colony triples every hour

o Set up a recurrence relation for the number of
bacteria after n hours have elapsed.

o 100 bacteria are used to begin a new colony.

(€8200 - Recurrence Relations

ively defined functi e e
Recursively defined functions .

and recurrence relations

= A recursive function
f(0) = a (base case)
fn) = f(n-1) + d for n > 0O (recursive step)

= The above recursively defined function generates
the sequence
ay=a
a,=a,;+d

= A recurrence relation produces a sequence, an
application of a recursive function produces a
value from the sequence

(€8200 - Recurrence Relations 6

How to Approach Recursive Relations “ww  an
N EE Em

Recursive Functions “ Sequence of Values

f(0) =0 (base case) f0)=0
fin) =fin-1) + 2forn>0 f) =f0)+2=2
(recursive part) f2)=f(H+2=4

f3)=f2)+2=6

Closed Form?(solution,
explicit formula)

(€8200 - Recurrence Relations

€5200 M

‘ Find a recursive function ww Em
s B's M |

= Give a recursive definition of a”, where a is a
nonzero real number and n is a nonnegative
integer.

= Rosen Chapter 5 example 3-2 pp. 346

(€8200 - Recurrence Relations 8
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‘ Solving recurrence relations o

Cs200 BrM_
‘ Use a formula wm wm
s s T'm

Hint 2: Use known formula

m a,=r" (where r is a constant) is a solution for
a,=Cia, ;7Coa, 3% ... T, 4

= summing geometric series

l+r+r2+...+r=0""-1/(r-1)

ifrz1

(€8200 - Recurrence Relations 10

wm
s r's r'm
Solvea,=2;a,=3a,,,n>0
(1) What is the recursive function?
(2) What is the sequence of values?
Hint 1: Solve by substitution
m a,=2;a,=3(2)=6; a,=3(a,)=3(3(2)); a;=...
. . CS200 BrM
Linear Recurrence Relations = wm
ImErs Em

A linear homogeneous recurrence relation of
degree k with constant coefficients is a
recurrence relation of a form

a,=Ci, ; +Cyl, 1+ ... +Ca,
where, ¢, ¢, .5 .... ¢, are real numbers and
cisnot 0.

(8200 - Recurrence Relations 1

. CS200 BrM
‘ Requirements = wm
ImEs Em
m Linear: RHS is a sum of previous terms

» Homogeneous: no terms occur that are not
multiples of LHS

m Coefficients must be constants

(€8200 - Recurrence Relation:
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Is this a linear homogeneous recurrence wh
relation?

1. fn :fn—l + fn—2

2. a,=a,,+ad,,

s H,_2H, +1

I rm rm

Linear homogeneous
recurrence relations?
A1 B.2 C.3 D.123

= Modeling of problems
m They can be systematically solved.

(€8200 - Recurrence Relations 13
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Theorem 1 ..

Let ¢, and ¢, be real numbers. Suppose that
?—cr—c,=0
has two distinct roots 7, and r, . Then the sequence
{a,} is a solution of the recurrence relation
Ay = €1y TC,
if and only if
a, = o,r"+ o, for n=0,1,2,...
where a, and o, are constants.

Rosen section8.2 theorem 1, pp.515
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What is the solution of the recurrence waws wa
relation:

a,=a,,+2a,,withay,=2anda, =77

From Theorem 1: Given a, = c,a, , +c,a,,

r? —cr—c,=0

Characteristic equation is 72 — 1r — 2; roots are 2 and -1.

Iff a, = 0,27+ o, (-1)"

From initial conditions,

a=2=0,*1+ a,*1 a,=T=0,*2+ o, *(-1)

If a,=3, then a,= -1 and a, = 3*27-(-1)"

Rosen Section 8-2 Example 3 pp. 516
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Divide-and-Conquer = ¥

Basic idea:

Take large problem and divide it into smaller problems
until problem is trivial, then combine parts to make
solution.

Recurrence relation for the number of steps required:
fn) =afin/b) + g(n)

n/b : the size of the sub-problems solved

a : number of sub-problems

g(n) : steps necessary to combine solutions to sub-problems

(C8200 - Recurrence Relations 16




| Example: Binary Search

public static int binSearch (int myArray[], int first,
int last, int value) {
// returns the index of value or -1 if not in the array
int index;

if (first > last) { index = -1; }
else {
int mno = (first + last)/2;
if (value == myArray[mno]) { index = mno; }

else if (value < myArray[mno]) {
index = binSearch(myArray, first, mno-1, value);
}
else {
index = binSearch(myArray, mno+l, last, value);
}
}

return index;

}
What are a, b, and g(n)?

fm)y=a- f(n/b)+ g(n).

(€8200 - Recurrence Relations 1
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Estimating big-O (Master Theorem) s~ ==

'E r'm

Letf be an increasing function that satisfies
fmy=a- f(nib)+c-n*
whenever n = b*, where k is a positive integer, a =1, b is
an integer > 1, and ¢ and d are real numbers with ¢ positive
and d nonnegative. Then

o(n) ifa<b’
f(n)= O(nd logn) ifa=0"

o) ifa>b

From section 8.3 in Rogen

“8200 - Recurrence Relations 18
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Binary Search using the Master Theorem afﬂ =

e

For binary search o(n") if a < b’
= d

) =C;J;Zl1 ﬁg :Z f(n)= O(nd logn) ifa=b"

0(n'°gb“) ifa>b*

Therefore, d = 0 (to make n? a constant), b =2, a = 1.
bi=20=]

It satisfies the second condition of the Master theorem.

So, f(n) = O(nlog,n) = O(n’log,n) = O(log,n)

(8200 - Recurrence Relations 19

Step-by-step Master Theorem == ==
(s ]

wn =m
= Modeling divide-and-conquer with a
recurrence relation.

m f(n) is a recurrence function representing the
number of operations with size of input ».

(C8200 - Recurrence Relations 20
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|LEVEL 2| Method | | Method | Method | |

r— r—
LevEL%‘] o) (et

LEVEL 4

Goal 1: What is the complexity per level?
Goal 2: What is the total complexity?

(€S200 - Recurrence Relations 21

|
[ever 1 o
| Method | | Method |

i i Method I E Method I

“Method” is called with input size n.

“Method” calls “Method” recursively a times
“Method” calls “Method” recursively with input size n/b

(8200 - Recurrence Relations 22

‘ C€S200

| Method | | Method |

i i Method I ﬁ Method I
- n L}

“Method” includes software fragment on top of calling
methods recursively, and it takes g(n) operations.

(8200 - Recurrence Relations 23

[Cever

Therefore, in LEVEL 1, “Method” requires,
f(n) =afin/b)+gn)

(C8200 - Recurrence Relations 24
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[LEVEL 2| Method | | Methog | = = =

A ]
EI Method I EMethod I l

This is also true for LEVEL 2
ftn) =afn/b) +gn)

(€S200 - Recurrence Relations 25
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| More generally,

Letf be an increasing function that satisfies
f(n)y=af (n/b)+g(n)=af (n/b)+ cn’
whenever n = b*, where k is a positive integer, a =1, b is

an integer > 1, and ¢ and d are real numbers with ¢ positive
and d nonnegative.

O(n) ifa<b?
fin) is O(nflogn) ifa=b?
o(nles#)  ifa > b?

(€8200 - Recurrence Relations

| Method | | Method | = = =

=&

cs;ga_/l:\
. Em

I rm rm

[LEVEL i 0 |
This is also true for LEVEL i
ftn) = af(n/b) +g(n
€5200 prm
Base case  wm
s s T'm

s We will setd=1

o The bottom level of the tree is equally well
computed.

o Base case

o Itis straightforward to extend the proof for the
case whend # 1.

(€8200 - Recurrence Relations




€5200_BrM

| Goal 1. complexity per level e ¥

= Let’s think about the recursion tree.
= There will be log,n levels.

= At each level, the number of
subproblems will be multiplied by a.

m Therefore, the number of
subproblems at level i will be a'.

= Each subproblem at level i is a
problem of size (n/b).

= A subproblem of size (n/b’) requires
(n/b')¢ additional work.

(€8200 - Recurrence Relations 29

‘ . Cs200 sm
Total amount of work on level i 2=, ™™

al(n/b’)¢ = nd(ai/b%)
nd (a/b?)

For the level i, the work per level is decreasing,
constant, or increasing exactly when (a/b%)! is
decreasing, constant, or increasing.

(€8200 - Recurrence Relations 30

‘Observation =
IEEE Im
= Now, observe that,

(a/b?) =1

a=>bl

m Therefore, the relations,

ma<bl (2)a=b%(3)a>b?

are the conditions deciding the types of the
growth function

(8200 - Recurrence Relations 31
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Goal 2: e m

. . . .f. .\:. .f.
Bounding f(n) in the different cases.

In general, we have that the total work done is,

log;, n log, n

End(a/bd)i =n’ E (a/b™y
iz0 i=0

1. a<bd
2. a=b?
3. a>b?

(C8200 - Recurrence Relations 32




CSZO?R,
‘Casel.a<bd o ®m

s s
log,, n log, n
Y n'@b’y =n" Y (alb"y
i=0 i=0

= n? times a geometric series with a ratio of
less than 1.

m Firstitem is the biggest one.

n

<3
i

b

n! . (a/b")' =0(n")

i
o

(€8200 - Recurrence Relations 33
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‘ Case2.a="b F
log, n log, n
Y nl@b’y =n" Y (alb"y
i=0 i=0
w (a/b) = 1

m nd(1+1+1+...+1) = nélog,n)

log, n

n' Y (@/b’) =0(nlog, n)

i=0

(€8200 - Recurrence Relations 34
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‘ Case 3.a > b? o
N EE I
log, n log, n
Y nlab’y =n" Y (alb'y
i=0 i=0

(a/b?) > 1. Therefore the largest term is the last one.
nd(a/bd )]Og”n = nd(a]Ogh n /(bd )logb n)
=n?(n"% /n' =)

- nd(nlog/,a /i’ld)

log, a

=n
log, n

n' Yy (@lb’) =0 )
i=0
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Complexity of MergeSort with Masteriﬁf;p
Theorem

Mergesort splits a list to be sorted twice per level.

Uses fewer than n comparisons to merge the two
sorted lists of n/2 items each into one sorted list.

= Function M(n) satisfies the divide-and-conquer
recurrence relation

M(n) =2M(n/2) + n

(C8200 - Recurrence Relations 36
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Complexity of MergeSort with Master sx =

Theorem (2/2)
M(n) = 2M(n/2) + n _
for the mergesort algorithm O(nd )

Sfn) = afn/b)+nd
=2fn/2) +n!

ifa<b’
f(n)=10(n"logn) ifa=>b"
o(n") ifa>b"
Therefore,d=1,b=2,a=2.
bi=21=2

It satisfies the second condition of the Master theorem.
So, f{n) = O(nlog,n)

€s200 -

‘ quickSort: Recurrence Analysis == &=
I rm rm

f(n)=a- f(n/b)+cn*

m a=
m b=
m C=
m d=
= O(?)

= O(n'log,n)
= O(nlog,n)
. cs200 Brm_
‘ Tractability Fe g

m A problem that is solvable using an algorithm
with polynomial worst-case complexity is
called tractable.

= If estimation has high degree or if the
coefficients are extremely large, the algorithm
may take an extremely long time to solve the
problem.

(8200 - Recurrence Relations 39

Intractable problems and Unsolvable :_;2”1 Titm

problems .

m If the problem cannot be solved using an
algorithm with worst-case polynomial time
complexity, such problems are called
intractable.

m If it can be shown that no algorithm exists for
solving them, such problems are called
unsolvable.

(C8200 - Recurrence Relations 40
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‘ Class NP and NP-Complete e ¥

rE r'm

= Problems for which a solution can be checked in
polynomial time are said to belong to the class
NP.

a Tractable problems belong to class P.

= NP-complete problems are an important class of
problems
a If any of these problems can be solved by a polynomial
worst-case time algorithm then ...

= All problems in the class NP can be solved by polynomial worst-
case time algorithms.

(€8200 - Recurrence Relations 41

| NP-Hard o

oE s ©m

m NP-Hard problems are at least as hard as the
hardest problems in NP

(€8200 - Recurrence Relations 42
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