
1

 CS200: Recurrence Relations
and the Master Theorem

Rosen Ch. 8.1 - 8.3

CS200 - Recurrence Relations 1

Recurrence Relations:
An Overview
n  What is a recurrence relation?

q  A recursively defined sequence

n  Example
q  Arithmetic progression: a, a+d, a+2d, …, a+nd	

n  a0 = a	

n  an = an-1 + d	

2 CS200 - Recurrence Relations

3

Formal Definition

n  Sequence = Recurrence relation + Initial
conditions (“base case”)

n  Example: an = 2an-1 + 1, a1 = 1

n  Pg. 158 in Rosen

€

A recurrence relation for the sequence an{ } is an equation
that expresses an in terms of one of more of the previous
terms of the sequence, namely, a0,a1,...an−1, for all integers
n with n ≥ n0 where n0 is a nonnegative integer.

CS200 - Recurrence Relations 4

Compound Interest

n  You deposit $10,000 in a savings account that
yields 10% yearly interest. How much money
will you have after 30 years? (b is balance, r is
rate)

€

bn = bn−1 + rbn−1 = (1+ r)nb0

CS200 - Recurrence Relations

2

Modeling with Recurrence

n  Suppose that the number of bacteria in a
colony triples every hour
q  Set up a recurrence relation for the number of

bacteria after n hours have elapsed.
q  100 bacteria are used to begin a new colony.

5 CS200 - Recurrence Relations

Recursively defined functions
and recurrence relations
n  A recursive function

f(0) = a (base case)
f(n) = f(n-1) + d for n > 0 (recursive step)

n  The above recursively defined function generates
the sequence
a0 = a	

an = an-1 + d	

n  A recurrence relation produces a sequence, an
application of a recursive function produces a
value from the sequence

6 CS200 - Recurrence Relations

How to Approach Recursive Relations

7

Recursive Functions Sequence of Values

f(0) = 0 (base case)
f(n) = f(n-1) + 2 for n > 0
(recursive part)

f(0) = 0
f(1) = f(0) +2 = 2	

f(2) = f(1)+2 = 4
f(3) = f(2) +2 = 6

 Closed Form?(solution,
explicit formula)

CS200 - Recurrence Relations

Find a recursive function

n  Give a recursive definition of an, where a is a
nonzero real number and n is a nonnegative
integer.

n  Rosen Chapter 5 example 3-2 pp. 346

8 CS200 - Recurrence Relations

3

Solving recurrence relations

Solve a0 = 2; an = 3an-1, n > 0	

(1) What is the recursive function?
(2) What is the sequence of values?

Hint 1: Solve by substitution
n  a0 = 2; a1=3(2)=6; a2=3(a1)=3(3(2)); a3=…

9 CS200 - Recurrence Relations

a

Use a formula

Hint 2: Use known formula
n  an=rn (where r is a constant) is a solution for

 an=c1an-1+c2an-2+…+ckan-k
n  summing geometric series

1 + r + r2 + … + rn = (rn+1 - 1)/(r – 1) 	

 if r ≠ 1	

10 CS200 - Recurrence Relations

Linear Recurrence Relations

A linear homogeneous recurrence relation of
degree k with constant coefficients is a
recurrence relation of a form

an = c1an-1 + c2an-2+ … + ckan-k	

where, c1,c2 ,c3 …. ,ck are real numbers and 	

	
ck is not 0.

11 CS200 - Recurrence Relations

Requirements

n  Linear: RHS is a sum of previous terms
n  Homogeneous: no terms occur that are not

multiples of LHS
n  Coefficients must be constants

CS200 - Recurrence Relations 12

4

Is this a linear homogeneous recurrence
relation?
1.  fn = fn-1 + fn-2	

2.  an = an-1 + a2

n-2	

3.  Hn = 2Hn-1+1	

n  Modeling of problems	

n  They can be systematically solved.

13

Linear homogeneous
recurrence relations?

A. 1 B. 2 C. 3 D. 1,2,3

CS200 - Recurrence Relations

Theorem 1

 Let c1 and c2 be real numbers. Suppose that
 r2 –c1r – c2 = 0
 has two distinct roots r1 and r2 . Then the sequence
{an} is a solution of the recurrence relation
 an = c1an-1 +c2an-2

 if and only if
 an = α1r1

n
 + α2r2

n for n= 0,1,2,…
 where α1 and α2 are constants.

Rosen section8.2 theorem 1, pp.515

14 CS200 - Recurrence Relations

What is the solution of the recurrence
relation:

an = an-1 + 2an-2 with a0 = 2 and a1 = 7?

From Theorem 1: Given an = c1an-1 +c2an-2

 r2 –c1r – c2 = 0
Characteristic equation is r2 – 1r – 2; roots are 2 and -1.
Iff an = α12n

 + α2(-1)n

From initial conditions,
a0=2=α1*1 + α2*1 a1=7=α1*2 + α2*(-1)

If α1=3, then α2= -1 and an = 3*2n-(-1)n

Rosen Section 8-2 Example 3 pp. 516

15 CS200 - Recurrence Relations 16

Divide-and-Conquer

Basic idea:
 Take large problem and divide it into smaller problems
until problem is trivial, then combine parts to make
solution.

Recurrence relation for the number of steps required:

 f(n) = a f(n / b) + g(n)

n/b : the size of the sub-problems solved

a : number of sub-problems

g(n) : steps necessary to combine solutions to sub-problems

CS200 - Recurrence Relations

5

17

Example: Binary Search
public static int binSearch (int myArray[], int first, !
! ! ! ! ! int last, int value) {!
!// returns the index of value or -1 if not in the array!
!int index;!
!if (first > last) { index = -1; }!
!else {!
! int mno = (first + last)/2;!
! if (value == myArray[mno]) { index = mno; }!
! else if (value < myArray[mno]) {!
! ! index = binSearch(myArray, first, mno-1, value); !

 }!
! ! else { !

 index = binSearch(myArray, mno+1, last, value); !
 }!
!} !
!return index;!

}

What are a, b, and g(n)?

€

f (n) = a ⋅ f (n /b)+ g(n)
CS200 - Recurrence Relations

Estimating big-O (Master Theorem)

18

€

Let f be an increasing function that satisfies
f (n) = a ⋅ f (n /b) + c ⋅ nd

whenever n = bk, where k is a positive integer, a ≥1, b is
an integer > 1, and c and d are real numbers with c positive
and d nonnegative. Then

f (n) =

O nd() if a < bd

O nd logn() if a = bd

O n logb a() if a > bd

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

From section 8.3 in Rosen
CS200 - Recurrence Relations

f (n) =

O nd() if a < bd

O nd logn() if a = bd

O n logb a() if a > bd

!

"

#
#

$

#
#

%

&

#
#

'

#
#

19

Binary Search using the Master Theorem

For binary search
f(n) = a f(n / b) + nd

 = 1 f(n / 2) + 3

Therefore, d = 0 (to make nd a constant), b = 2, a = 1.
bd = 20 = 1

It	 sa,sfies	 the	 second	 condi,on	 of	 the	 Master	 theorem.	

So, f(n) = O(ndlog2n) = O(n0log2n) = O(log2n)

CS200 - Recurrence Relations

Step-by-step Master Theorem

n  Modeling divide-and-conquer with a
recurrence relation.

n  f(n) is a recurrence function representing the
number of operations with size of input n.

20 CS200 - Recurrence Relations

6

CS200 - Recurrence Relations 21

Method

Method Method Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

…

 LEVEL 1

 LEVEL 2

LEVEL 3

 LEVEL 4

Goal 1: What is the complexity per level?
Goal 2: What is the total complexity?

CS200 - Recurrence Relations 22

Method

Method Method Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

…

…

“Method” calls “Method” recursively a times
“Method” calls “Method” recursively with input size n/b

“Method” is called with input size n.

 LEVEL 1

CS200 - Recurrence Relations 23

Method

Method Method Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

…

…
“Method” includes software fragment on top of calling
 methods recursively, and it takes g(n) operations.

CS200 - Recurrence Relations 24

Method

Method Method Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

…

…
Therefore, in LEVEL 1, “Method” requires,
 f(n) = a f(n / b) + g(n)

 LEVEL 1

7

CS200 - Recurrence Relations 25

Method

Method Method Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

…

…
This is also true for LEVEL 2
 f(n) = a f(n / b) + g(n)

 LEVEL 2

CS200 - Recurrence Relations 26

Method

Method Method Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

Method
Method

…

…
This is also true for LEVEL i	

 f(n) = a f(n / b) + g(n)

 LEVEL i

More generally,

27

€

Let f be an increasing function that satisfies
f (n) = af (n /b) + g(n) = af (n /b) + cnd
whenever n = bk, where k is a positive integer, a ≥1, b is
an integer > 1, and c and d are real numbers with c positive
and d nonnegative.

 	

 O(nd) if a < bd	

f(n) is O(ndlogn) if a = bd	

 O(nlogba) if a > bd 	

CS200 - Recurrence Relations

Base case

n  We will set d = 1	

q  The bottom level of the tree is equally well

computed.
q  Base case
q  It is straightforward to extend the proof for the

case when d ≠ 1.

28 CS200 - Recurrence Relations

8

Goal 1. complexity per level
n  Let’s think about the recursion tree.

n  There will be logbn levels.

n  At each level, the number of
subproblems will be multiplied by a.

n  Therefore, the number of
subproblems at level i will be ai.

n  Each subproblem at level i is a
problem of size (n/bi).

n  A subproblem of size (n/bi) requires
(n/bi)d additional work.

29 CS200 - Recurrence Relations

Total amount of work on level i	

ai(n/bi)d = nd (ai/bdi)	

 = nd (a/bd)i	

For the level i, the work per level is decreasing,
constant, or increasing exactly when (a/bd)i is
decreasing, constant, or increasing.
	

	

	

30 CS200 - Recurrence Relations

Observation

n  Now, observe that,
 (a/bd) = 1 	

 a = bd
 	

n  Therefore, the relations, 	

(1)  a < bd (2) a = bd, (3) a > bd 	

are the conditions deciding the types of the

growth function

31 CS200 - Recurrence Relations

Goal 2:
Bounding f(n) in the different cases.

In general, we have that the total work done is,

1.  a < bd 	

2.  a = bd	

3.  a > bd 	

32

€

nd
i=0

logb n

∑ (a /bd)i = nd (
i=0

logb n

∑ a /bd)i

CS200 - Recurrence Relations

9

Case 1. a < bd

n  nd times a geometric series with a ratio of
less than 1.

n  First item is the biggest one.

33

€

nd
i=0

logb n

∑ (a /bd)i = nd (
i=0

logb n

∑ a /bd)i

€

nd (
i=0

logb n

∑ a /bd)i =Ο(nd)

CS200 - Recurrence Relations

Case 2. a = bd

n  (a/bd) = 1	

n  nd(1+1+1+…+1) = nd(logbn)	

34

€

nd
i=0

logb n

∑ (a /bd)i = nd (
i=0

logb n

∑ a /bd)i

€

nd (
i=0

logb n

∑ a /bd)i =Ο(nd logb n)

CS200 - Recurrence Relations

Case 3. a > bd

(a/bd) > 1. Therefore the largest term is the last one.

35

€

nd
i=0

logb n

∑ (a /bd)i = nd (
i=0

logb n

∑ a /bd)i

€

nd (a /bd)logb n = nd (alogb n /(bd)logb n)

= nd (n logb a /n logb b
d

)
= nd (n logb a /nd)
= n logb a

nd (
i=0

logb n

∑ a /bd)i =Ο(n logb a)

CS200 - Recurrence Relations

Complexity of MergeSort with Master
Theorem
n  Mergesort splits a list to be sorted twice per level.

n  Uses fewer than n comparisons to merge the two
sorted lists of n/2 items each into one sorted list.

n  Function M(n) satisfies the divide-and-conquer
recurrence relation

n  M(n) = 2M(n/2) + n 	

36 CS200 - Recurrence Relations

10

Complexity of MergeSort with Master
Theorem (2/2)
M(n) = 2M(n/2) + n	

for the mergesort algorithm

f(n) = a f(n / b) + nd

 = 2 f(n / 2) + n1

Therefore, d = 1, b = 2, a = 2.
 bd = 21 = 2

It	 sa,sfies	 the	 second	 condi,on	 of	 the	 Master	 theorem.
So, f(n) = O(ndlog2n)
 = O(n1log2n)
 = O(nlog2n)

37

€

f (n) =

O nd() if a < bd

O nd logn() if a = bd

O n logb a() if a > bd

"

$

%
$

&

'
$

(
$

CS200 - Recurrence Relations 38

quickSort: Recurrence Analysis

n  a=
n  b=
n  c=
n  d=
n  O(?)

€

f (n) = a ⋅ f (n /b)+ cnd

Tractability

n  A problem that is solvable using an algorithm
with polynomial worst-case complexity is
called tractable.

n  If estimation has high degree or if the
coefficients are extremely large, the algorithm
may take an extremely long time to solve the
problem.

39 CS200 - Recurrence Relations

Intractable problems and Unsolvable
problems
n  If the problem cannot be solved using an

algorithm with worst-case polynomial time
complexity, such problems are called
intractable.

n  If it can be shown that no algorithm exists for
solving them, such problems are called
unsolvable.

40 CS200 - Recurrence Relations

11

Class NP and NP-Complete

n  Problems for which a solution can be checked in
polynomial time are said to belong to the class
NP.
q  Tractable problems belong to class P.

n  NP-complete problems are an important class of
problems
q  If any of these problems can be solved by a polynomial

worst-case time algorithm then …
n  All problems in the class NP can be solved by polynomial worst-

case time algorithms.

41 CS200 - Recurrence Relations

NP-Hard

n  NP-Hard problems are at least as hard as the
hardest problems in NP

42 CS200 - Recurrence Relations

