

What is the solution of the recurrence relation:	25200
$a_{n} = a_{n-1} + 2a_{n-2} \text{ with } a_{0} = 2 \text{ and } a_{1} = 7?$ From Theorem 1: Given $a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2}$ $r^{2} - c_{1}r - c_{2} = 0$ Characteristic equation is $r^{2} - 1r - 2$; roots are 2 and -1 Iff $a_{n} = \alpha_{1}2^{n} + \alpha_{2}(-1)^{n}$ From initial conditions, $a_{0}=2=\alpha_{1}*1 + \alpha_{2}*1$ $a_{1}=7=\alpha_{1}*2 + \alpha_{2}*(-1)$	
If α_1 =3, then α_2 = -1 and a_n = 3*2 ⁿ -(-1) ⁿ Rosen Section 8-2 Example 3 pp. 516	
CS200 - Recurrence Relations	15

More generally,
Let f be an increasing function that satisfies

$$f(n) = af(n/b) + g(n) = af(n/b) + cn^d$$

whenever $n = b^k$, where k is a positive integer, $a \ge 1$, b is
an integer > 1, and c and d are real numbers with c positive
and d nonnegative.
 $f(n)$ is $\begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$

CS200 - Recurrence Relations

Case 3.
$$a > b^d$$

$$\sum_{i=0}^{\log_b n} n^d (a/b^d)^i = n^d \sum_{i=0}^{\log_b n} (a/b^d)^i$$
 $(a/b^d) > 1$. Therefore the largest term is the last one.
 $n^d (a/b^d)^{\log_b n} = n^d (a^{\log_b n} / (b^d)^{\log_b n})$
 $= n^d (n^{\log_b a} / n^{\log_b b^d})$
 $= n^d (n^{\log_b a} / n^d)$
 $= n^{\log_b a}$
 $n^d \sum_{i=0}^{\log_b n} (a/b^d)^i = O(n^{\log_b a})$

Complexity of MergeSort with Master Theorem
Mergesort splits a list to be sorted twice per level.
Uses fewer than *n* comparisons to merge the two sorted lists of *n*/2 items each into one sorted list.
Function *M*(*n*) satisfies the divide-and-conquer recurrence relation *M*(*n*) = 2*M*(*n*/2) + *n*

