Computational Complexity:
Measuring the Efficiency of
Algorithms
■ Rosen Ch. 3.2: Growth of Functions
■ Prichard Ch. 10.1: Efficiency of Algorithms
cs200 complexity

Algorithm and Computational Complexity

- An algorithm is a finite sequence of precise instructions for performing a computation for solving a problem.
- Computational complexity measures the processing time and computer memory required by the algorithm to solve problems of particular size.

Software cost factors

- Human costs
- Time of developers, testers, maintainers, support team, users
- Managing human costs
- Adherence to software engineering principles
- Modularity and Abstraction (separation of concerns principle)
- Information hiding, good style, readability (design for change principle)

CS200 Complexity

Software cost factors (cont'd)

- Efficiency of algorithms
- Time to execute algorithms
- Space required by algorithms
- Focus of this week's lectures

Measuring the efficiency of algorithms

- We have two algorithms: algl and algz that solve the same problem. Our application needs a fast running time.
- How do we choose between the algorithms?

Measuring the efficiency of algorithms

- Objective: analyze algorithms independently of specific implementations, hardware, or data
- Observation: An algorithm's execution time is related to the number of operations it executes
- Solution: count the number of significant operations the algorithm will perform for an input of given size

Measuring the efficiency of algorithms

- Implement the two algorithms in Java and compare their running times
- Issues with this approach:
- How are the algorithms coded? We want to compare the algorithms, not the implementations.
- What computer should we use? Choice of operations could favor one implementation over another.
- What data should we use? Choice of data could favor one algorithm over another

Example

- Finding the maximum element in a finite sequence
public int max (in: array of positive integers a[]) int max=-1;
for (int i = 0; i < size_of_array; i++) \{
if (max < a[i]) max = a[i];
\}
return max;
\}
For the input array with size of n integers, for loop is executed \mathbf{n} times

Example: Clicker $Q \quad$ cs200 ?

- Number of positions to check when running binary search on an array of size 32 when the element is not there:

1. 1
2. 2
3. 5
4. 32

- Algorithm A requires $n^{2} / 2$ operations to solve a problem of size n
- Algorithm B requires $5 n+10$ operations to solve a problem of size n
- Which one would you choose?

Growth rates

- Algorithm A requires $n^{2} / 2$ operations to solve a problem of size n
- Algorithm B requires $5 n+10$ operations to solve a problem of size n
- For large enough problem size algorithm B is more efficient
- Important to know how quickly an algorithm's execution time grows as a function of program size
- We focus on the growth rate:
- Algorithm A requires time proportional to n^{2}
- Algorithm B requires time proportional to n
- B's time requirements grows more slowly than A's time requirement (for large n)

Order of magnitude analysis

- Big O notation: A function $f(x)$ is $O(g(x))$ if there exist two positive constants, c and k, such that

$$
f(x) \leq c^{*} g(x) \quad \forall x>k
$$

- Focus is on the shape of the function
- Ignore the multiplicative constant
- Focus is on large x
- k allows us to ignore behavior for small x

Order of magnitude analysis

- Big O notation: A function $f(x)$ is $O(g(x))$ if there exist two positive constants, c and k, such that

$$
f(x) \leq c^{*} g(x) \quad \forall x>k
$$

- c and k are witnesses to the relationship that $f(x)$ is $O(g(x))$
- If there is one pair of witnesses (c, k) then there are infinitely many.

Logarithms (cont.)

- Properties of logarithms
- $\log (x y)=\log x+\log y$
- $\log \left(x^{a}\right)=a \log x$
- $\log _{a} n=\log _{b} n / \log _{b} a$
- logarithm is a very slow-growing function
- examples of logarithmic complexity?

Big-O for Polynomials

Theorem: Let

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where $a_{n}, a_{n-1} \ldots, a_{1}, a_{0}$ are real numbers.
Then $f(x)$ is $O\left(x^{n}\right)$
Example: $x^{2}+5 x$ is $O\left(x^{2}\right)$
Clicker Q
Give as good a Big O estimate as possible for the following growth
function.
$f(n)=\left(3 n^{2}+8\right)(n+1)$
(a) $\mathrm{O}(\mathrm{n})$
(b) $\mathrm{O}\left(\mathrm{n}^{3}\right)$
(c) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(d) $\mathrm{O}(1)$
Samgmi Lec Pallickara

Practical Analysis - Combinations ,

- Sequential
- Big-O bound: Steepest growth dominates
- Example: copying of array, followed by binary search
- $\mathrm{n}+\log (\mathrm{n}) \mathrm{O}(?)$
- Embedded code
- Big-O bound multiplicative
- Example: a for loop with n iterations and a body taking $\mathrm{O}(\log \mathrm{n}) \mathrm{O}(?)$

Combinations of Functions

- Additive Theorem:

Suppose that $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$.
Then $\left(f_{1}+f_{2}\right)(x)$ is $O\left(\max \left(\left|g_{1}(x)\right|,\left|g_{2}(x)\right|\right)\right.$.

- Multiplicative Theorem:

Suppose that $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$. Then $\left(f_{1} f_{2}\right)(x)$ is $O\left(g_{1}(x) g_{2}(x)\right)$.

Worst and Average Case
 Cs200 Time Complexity

- Worst case
- just how bad can it get: the maximal number of steps - our focus in this course
- Average case
- amount of time expected "usually"
- In this course we will hand wave when it comes to average case
- Best case
- The smallest number of steps
- Example: searching for an item in an unsorted array

Final Comments

- Order-of-magnitude analysis focuses on large problems
- If the problem size is always small, you can probably ignore an algorithm's efficiency
- Weigh the trade-offs between an algorithm's time requirements and its memory requirements, expense of programming/maintenance...
- We will devote more time to analyzing recursive algorithms later in the course.

