
1

Computational Complexity:
Measuring the Efficiency of
Algorithms
n  Rosen Ch. 3.2: Growth of Functions
n  Rosen Ch. 3.3: Complexity of Algorithms
n  Prichard Ch. 10.1: Efficiency of Algorithms

1 CS200 Complexity

Algorithm and Computational
Complexity

n  An algorithm is a finite sequence of precise

instructions for performing a computation for
solving a problem.

n  Computational complexity measures the
processing time and computer memory
required by the algorithm to solve problems
of particular size.

2 CS200 Complexity

Software cost factors

n  Human costs
q  Time of developers, testers, maintainers, support

team, users
n  Managing human costs

q  Adherence to software engineering principles
n  Modularity and Abstraction (separation of concerns

principle)
n  Information hiding, good style, readability (design for

change principle)

3 CS200 Complexity

Software cost factors (cont’d)

n  Efficiency of algorithms
q  Time to execute algorithms
q  Space required by algorithms

n  Focus of this week’s lectures

4 CS200 Complexity

2

Measuring the efficiency of
algorithms
n  We have two algorithms: alg1 and alg2 that

solve the same problem. Our application
needs a fast running time.

n  How do we choose between the algorithms?

5 CS200 Complexity

Measuring the efficiency of
algorithms
n  Implement the two algorithms in Java and

compare their running times
n  Issues with this approach:

q  How are the algorithms coded? We want to
compare the algorithms, not the implementations.

q  What computer should we use? Choice of
operations could favor one implementation over
another.

q  What data should we use? Choice of data could
favor one algorithm over another

6 CS200 Complexity

Measuring the efficiency of
algorithms
n  Objective: analyze algorithms independently

of specific implementations, hardware, or
data

n  Observation: An algorithm’s execution time is
related to the number of operations it
executes

n  Solution: count the number of significant
operations the algorithm will perform for an
input of given size

7 CS200 Complexity

Example: Clicker Q

n  Copying an array with n elements requires
___ invocations of copy operations

1.  1
2.  n
3.  2n

8 CS200 Complexity

3

Example

n  Finding the maximum element in a finite
sequence

public int max (in: array of positive integers a[])!
!int max=-1;!

 for (int i = 0; i < size_of_array; i++){!
 if (max < a[i]) max = a[i];!
 }!
 return max;!
}!

For the input array with size of n integers, for loop is
executed n times.

 9 CS200 Complexity

Example: Clicker Q

n  Number of positions to check when running
binary search on an array of size 32 when
the element is not there:
1.  1
2.  2
3.  5
4.  32

CS200 Complexity 10

Growth rates

n  Algorithm A requires n2 / 2 operations to solve a
problem of size n

n  Algorithm B requires 5n+10 operations to solve a
problem of size n

n  Which one would you choose?

11 CS200 Complexity

Growth rates

n  When we increase the size of input n, how the
execution time grows for these algorithms?

n 1 2 3 4 5 6 7 8
n2 / 2 1/2 4/2 9/2 16/2 25/2 36/2 49/2 64/2
5n+10 15 20 45 30 35 40 45 50

n 50 100 1,000 10,000 …
n2 / 2 1250 5,000 500,000 50,000,000 …
5n+10 260 510 5,010 50,010 …

12 CS200 Complexity

4

Growth Rates

13

Algorithm A
Algorithm B

CS200 Complexity

Growth rates
n  Algorithm A requires n2 / 2 operations to solve a

problem of size n
n  Algorithm B requires 5n+10 operations to solve a

problem of size n
n  For large enough problem size algorithm B is more

efficient
n  Important to know how quickly an algorithm’s

execution time grows as a function of program size
q  We focus on the growth rate:

n  Algorithm A requires time proportional to n2

n  Algorithm B requires time proportional to n
n  B’s time requirements grows more slowly than A’s time requirement (for

large n)

14 CS200 Complexity

Order of magnitude analysis

n  Big O notation: A function f(x) is O(g(x)) if there exist
two positive constants, c and k, such that
 f(x) ≤ c*g(x) ∀ x > k

c*g(x)

f(x)

n
k

15 CS200 Complexity

Order of magnitude analysis

n  Big O notation: A function f(x) is O(g(x)) if there exist
two positive constants, c and k, such that
 f(x) ≤ c*g(x) ∀ x > k

n  Focus is on the shape of the function

q  Ignore the multiplicative constant
n  Focus is on large x

q  k allows us to ignore behavior for small x

16 CS200 Complexity

5

CS200 Complexity 17

f(x)
g(x)

C g(x)

x k
€

f (x)∈Ο(g(x))

y

CS200 Complexity 18

f(x)
g(x)

C * g(x)

x k
€

f (x)∈Ο(g(x))

Let f and g be functions from the set
of integers or the set of real
numbers to the set of real numbers.
We say
f(x) is O(g(x)) If there are constants
C and k such that,
 |f(x)| ≤ C|g(x)|
whenever x > k

CS200 Complexity 19

f(x)
g(x)

x

€

f (x)∈Ω(g(x))
C g(x)

k
CS200 Complexity 20

f(x)
g(x)

C * g(x)

x

€

f (x)∈Ω(g(x))

x x

C * g(x)

Let f and g be functions from the set of
integers or the set of real numbers to
the set of real numbers. We say that
 f(x) is (g(x)) if there are
positive constants C and k such
that,
 | f(x)| ≥ C|g(x)|
whenever x > k

€

Ω

6

CS200 Complexity 21

f(x)
g(x)

C1 g(x)

x

€

f (x)∈Θ(g(x))
C2 g(x)

k
CS200 Complexity 22

f(x)
g(x)

C1 * g(x)

x

€

f (x)∈Θ(g(x))

x x

C2 * g(x)

Let f and g be functions from the
set of integers or the set of real
numbers to the set of real
numbers. We say that
f(x) is (g(x))
 if f(x) is (g(x)) and
 f(x) is (g(x))

€

Θ

€

Ο

€

Ω

Order of magnitude analysis

n  Big O notation: A function f(x) is O(g(x)) if there exist
two positive constants, c and k, such that
 f(x) ≤ c*g(x) ∀ x > k

n  c and k are witnesses to the relationship that
f(x) is O(g(x))

n  If there is one pair of witnesses (c,k) then
there are infinitely many.

23 CS200 Complexity

Common Shapes: Constant

n  O(1)

n  examples?

24 CS200 Complexity

7

Common Shapes: Linear

n  O(n)

f(n) = a*n + b

25 CS200 Complexity

Linear

Example: copying an array
for (int i = 0; i < a.size; i++){!
 a[i] = b[i];!
}!

26 CS200 Complexity

Other Shapes: Sublinear

27 CS200 Complexity

Common Shapes: logarithm

n  logbn is the number x such that bx = n
 23 = 8 log28 = 3
 24 = 16 log216 = 4

n  logbn: (# of digits to represent n in base b) – 1
n  We usually work with base 2

28 CS200 Complexity

8

Logarithms (cont.)

n  Properties of logarithms
q  log(x y) = log x + log y
q  log(xa) = a log x
q  logan = logbn / logba

n  logarithm is a very slow-growing function
n  examples of logarithmic complexity?

29 CS200 Complexity

n times

Quadratic

O(n2):

for (int i=0; i < n; i++){!
 for (int j=0; j < n; j++) {!
 …!
 }!
}!

n times

30 Samgmi Lee Pallickara

Other Shapes: Superlinear

Polynomial (xa), exponential (ax)

31 CS200 Complexity

Big-O for Polynomials

Theorem: Let

where are real numbers.
Then is

Example: x2 + 5x is O(x2)

€

f (x) = anx
n + an−1x

n−1 + ...+ a1x + a0

€

an,an−1...,a1,a0

€

f (x)

€

O(xn)

32 CS200 Complexity

9

Clicker Q

Give as good a Big O estimate as possible for the following growth
function.

f(n) = (3n2 + 8)(n + 1)

(a)  O(n)
(b)  O(n3)
(c)  O(n2)
(d)  O(1)

33 Samgmi Lee Pallickara

Combinations of Functions

n  Additive Theorem:

n  Multiplicative Theorem:
€

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)).
Then (f1 + f2)(x) is O(max(| g1(x) |,| g2(x) |).

€

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)).
Then (f1 f2)(x) is O(g1(x)g2(x)).

34 CS200 Complexity

Practical Analysis - Combinations

n  Sequential
q  Big-O bound: Steepest growth dominates
q  Example: copying of array, followed by binary search

n  n + log(n) O(?)

n  Embedded code
q  Big-O bound multiplicative
q  Example: a for loop with n iterations and a body taking

O(log n) O(?)

35 CS200 Complexity

Worst and Average Case
Time Complexity
n  Worst case

q  just how bad can it get: the maximal number of steps
q  our focus in this course

n  Average case
q  amount of time expected “usually”
q  In this course we will hand wave when it comes to average case

n  Best case
q  The smallest number of steps

n  Example: searching for an item in an unsorted array

36 CS200 Complexity

10

Practical Analysis - Loops

1 public void insertElementAt(Object obj, int index) {
 …
2 for (i = elementCount; i > index; i--) {
3 elementData[i] = elementData[i-1];

 }
 ...

 }
How many times will line 3 repeat?
On what does the number depend?

37 CS200 Complexity

Practical Analysis –
Dependent loops

 for (i = 0; i < n; i++) {
 for (j = 0; j < i; j++) {
 ...
 }
 }
 ...

i = 0: inner-loop iters =0

i = 1: inner-loop iters =1

Total = 0 + 1 + 2 + ... + (n-1)
 f(n) = n*(n-1)/2

O(n2)

i = n-1: inner-loop iters =n-1

.

.

.

38 CS200 Complexity

Practical Analysis - Recursion

n  Number of operations depends on :
q  number of calls
q  work done in each call

n  Examples:
q  factorial: how many recursive calls?
q  binary search?

n  We will devote more time to analyzing
recursive algorithms later in the course.

39 CS200 Complexity

Final Comments

n  Order-of-magnitude analysis focuses on large
problems

n  If the problem size is always small, you can probably
ignore an algorithm’s efficiency

n  Weigh the trade-offs between an algorithm’s time
requirements and its memory requirements,
expense of programming/maintenance…

40 CS200 Complexity

