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Computational Complexity:  
Measuring the Efficiency of 
Algorithms 
n  Rosen Ch. 3.2: Growth of Functions 
n  Rosen Ch. 3.3: Complexity of Algorithms 
n  Prichard Ch. 10.1: Efficiency of Algorithms 
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Algorithm and Computational 
Complexity 
 
n  An algorithm is a finite sequence of precise 

instructions for performing a computation for 
solving a problem. 

n  Computational complexity measures the 
processing time and computer memory 
required by the algorithm to solve problems 
of particular size. 
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Software cost factors 

n  Human costs 
q  Time of developers, testers, maintainers, support 

team, users 
n  Managing human costs 

q  Adherence to software engineering principles 
n  Modularity and Abstraction (separation of concerns 

principle) 
n  Information hiding, good style, readability (design for 

change principle) 
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Software cost factors (cont’d) 

n  Efficiency of algorithms 
q  Time to execute algorithms 
q  Space required by algorithms 

n  Focus of this week’s lectures 

4 CS200 Complexity 



2 

Measuring the efficiency of 
algorithms 
n  We have two algorithms:  alg1 and alg2 that 

solve the same problem.  Our application 
needs a fast running time. 

n  How do we choose between the algorithms? 
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Measuring the efficiency of 
algorithms 
n  Implement the two algorithms in Java and 

compare their running times 
n  Issues with this approach: 

q  How are the algorithms coded?  We want to 
compare the algorithms, not the implementations. 

q  What computer should we use?  Choice of 
operations could favor one implementation over 
another. 

q  What data should we use? Choice of data could 
favor one algorithm over another 
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Measuring the efficiency of 
algorithms 
n  Objective:  analyze algorithms independently 

of specific implementations, hardware, or 
data 

n  Observation: An algorithm’s execution time is 
related to the number of operations it 
executes 

n  Solution:  count the number of significant 
operations the algorithm will perform for an 
input of given size 
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Example: Clicker Q 

n  Copying an array with n elements requires 
___  invocations of copy operations 

1.  1 
2.  n 
3.  2n 
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Example 

n  Finding the maximum element in a finite 
sequence 

 

public int max (in: array of positive integers a[])!
!int max=-1;!

   for (int i = 0; i < size_of_array; i++){!
        if ( max < a[i] ) max = a[i];!
   }!
   return max;!
}!

 

For the input array with size of n integers, for loop is 
executed n times. 
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Example: Clicker Q 

n  Number of positions to check when running 
binary search on an array of size 32 when 
the element is not there: 
1.  1 
2.  2 
3.  5 
4.  32 
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Growth rates 

n  Algorithm A requires n2 / 2  operations to solve a 
problem of size n 

n  Algorithm B requires 5n+10 operations to solve a 
problem of size n 

n  Which one would you choose? 
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Growth rates 

n  When we increase the size of input n, how the 
execution time grows for these algorithms?  

 
n 1 2 3 4 5 6 7 8 
n2 / 2  1/2 4/2 9/2 16/2 25/2 36/2 49/2 64/2 
5n+10  15 20 45 30 35 40 45 50 

n 50 100 1,000 10,000 … 
n2 / 2  1250 5,000 500,000 50,000,000 … 
5n+10  260 510 5,010 50,010 … 
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Growth Rates 
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Algorithm A 
Algorithm B 
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Growth rates 
n  Algorithm A requires n2 / 2  operations to solve a 

problem of size n 
n  Algorithm B requires 5n+10 operations to solve a 

problem of size n 
n  For large enough problem size algorithm B is more 

efficient 
n  Important to know how quickly an algorithm’s 

execution time grows as a function of program size 
q  We focus on the growth rate: 

n  Algorithm A requires time proportional to n2 

n  Algorithm B requires time proportional to n 
n  B’s time requirements grows more slowly than A’s time requirement (for 

large n) 
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Order of magnitude analysis 

n  Big O notation:  A function f(x) is O(g(x)) if there exist 
two positive constants, c and k, such that  
   f(x) ≤ c*g(x)       ∀ x > k 

c*g(x) 

f(x) 

n 
k 
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Order of magnitude analysis 

n  Big O notation:  A function f(x) is O(g(x)) if there exist 
two positive constants, c and k, such that  
   f(x) ≤ c*g(x)       ∀ x > k 

 
n  Focus is on the shape of the function 

q  Ignore the multiplicative constant 
n  Focus is on large x 

q  k allows us to ignore behavior for small x 
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f(x) 
g(x) 
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x k 
€ 

f (x)∈Ο(g(x))

Let f and g be functions from the set 
of integers or the set of real 
numbers to the set of real numbers. 
We say  
f(x) is O(g(x))  If there are  constants 
C and k  such that,  
            |f(x)|  ≤ C|g(x)|  
whenever x > k 
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Let f and g be functions from the set of 
integers or the set of real numbers to 
the set of real numbers. We say that 
  f(x) is      (g(x))  if there are 
positive constants C and k such 
that,  
        | f(x)| ≥ C|g(x)|  
whenever x > k 

€ 

Ω
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f(x) 
g(x) 

C1 * g(x) 

x 

€ 

f (x)∈Θ(g(x))

x x 

C2 * g(x) 

Let f and g be functions from the 
set of integers or the set of real 
numbers to the set of real 
numbers. We say that    
f(x) is       (g(x)) 
 if f(x) is     (g(x)) and  
    f(x) is     (g(x)) 
 

€ 

Θ

€ 

Ο

€ 

Ω

Order of magnitude analysis 

n  Big O notation:  A function f(x) is O(g(x)) if there exist 
two positive constants, c and k, such that  
   f(x) ≤ c*g(x)       ∀ x > k 

 

n  c and k are witnesses to the relationship that 
f(x) is O(g(x)) 

n  If there is one pair of witnesses (c,k) then 
there are infinitely many. 
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Common Shapes: Constant 

n  O(1) 

n  examples? 
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Common Shapes: Linear 

n  O(n) 

f(n) = a*n + b 
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Linear 

Example: copying an array 
for (int i = 0; i < a.size; i++){!
    a[i] = b[i];!
}!
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Other Shapes: Sublinear 
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Common Shapes: logarithm  

n  logbn is the number x such that bx = n      
      23 = 8       log28 = 3 
      24 = 16   log216 = 4 

n  logbn: (# of digits to represent n in base b) – 1 
n  We usually work with base 2 
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Logarithms (cont.) 

n  Properties of logarithms 
q  log(x y) = log x + log y 
q  log(xa) = a log x 
q  logan = logbn / logba 

n  logarithm is a very slow-growing function 
n  examples of logarithmic complexity? 
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n times 

Quadratic 

O(n2): 

for (int i=0; i < n; i++){!
   for (int j=0; j < n; j++) {!
     …!
   }!
}!

n times 
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Other Shapes: Superlinear 

Polynomial (xa), exponential (ax) 
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Big-O for Polynomials 

Theorem: Let  
 
 
where                           are real numbers. 
Then          is 

Example:  x2 + 5x is O(x2) 
 

€ 

f (x) = anx
n + an−1x

n−1 + ...+ a1x + a0

€ 

an,an−1...,a1,a0

€ 

f (x)

€ 

O(xn)
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Clicker Q 

Give as good a Big O estimate as possible for the following growth 
function. 

f(n) = (3n2 + 8)(n + 1) 
 
(a)  O(n) 
(b)  O(n3) 
(c)  O(n2) 
(d)  O(1) 
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Combinations of Functions 

n  Additive Theorem: 

n  Multiplicative Theorem:  
€ 

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). 
Then ( f1 + f2)(x) is O(max(| g1(x) |,| g2(x) |).

€ 

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). 
Then ( f1 f2)(x) is O(g1(x)g2(x)).
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Practical Analysis - Combinations 

n  Sequential 
q  Big-O bound: Steepest growth dominates 
q  Example: copying of array, followed by binary search  

n  n + log(n)   O(?) 

n  Embedded code 
q  Big-O bound multiplicative 
q  Example: a for loop with n iterations and a body taking 

O(log n)   O(?) 
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Worst and Average Case  
Time Complexity 
n  Worst case 

q  just how bad can it get: the maximal number of steps 
q  our focus in this course 

n  Average case 
q  amount of time expected “usually” 
q  In this course we will hand wave when it comes to average case 

n  Best case  
q  The smallest number of steps   

n  Example:  searching for an item in an unsorted array 
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Practical Analysis - Loops 

1        public void insertElementAt(Object obj, int index) { 
           … 
2            for (i = elementCount; i > index; i--) {    
3                   elementData[i] = elementData[i-1]; 

    } 
           ... 

 } 
How many times will line 3 repeat? 
On what does the number depend? 
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Practical Analysis –  
Dependent loops 

 .... 
 for (i = 0; i < n; i++) { 
  for (j = 0; j < i; j++) { 
       ... 
  } 
 } 
 ... 

 

i = 0:    inner-loop iters =0 

i = 1:    inner-loop iters =1 

Total = 0 + 1 + 2 + ... + (n-1) 
 f(n)  = n*(n-1)/2 

O(n2) 

i = n-1: inner-loop iters =n-1 

. 

. 

. 
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Practical Analysis - Recursion 

n  Number of operations depends on : 
q  number of calls 
q  work done in each call 

n  Examples: 
q  factorial: how many recursive calls? 
q  binary search? 

n  We will devote more time to analyzing 
recursive algorithms later in the course. 
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Final Comments 

n  Order-of-magnitude analysis focuses on large 
problems 

n  If the problem size is always small, you can probably 
ignore an algorithm’s efficiency 

n  Weigh the trade-offs between an algorithm’s time 
requirements and its memory requirements, 
expense of programming/maintenance… 
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