
1

CS200: Recursion

Prichard Ch. 6.1 & 6.3

1 CS200 - Recursion 2 CS200 - Recursion

3

Backtracking

n  Problem solving technique that involves
guesses at a solution.

n  Retrace steps in reverse order and try new
sequence of steps

CS200 - Recursion

Depth First Search

n  Looking for a path in a
maze

n  Strategy:
q  Prioritize directions: right,

straight or left.
q  At a dead end “backtrack”

and try a different direction

n  Recursive solution?

4 CS200 - Recursion

2

5

The Eight Queens Problem

Place 8 Queens!
No queen can attack
any other queens.

CS200 - Recursion 6

Solution with recursion and backtracking

placeQueen (in currColumn:integer)!
if (currColumn > 8) {  

The problem is solved!
} else {!
 while (unconsidered squares exist in currColumn and the!
 problem is unsolved) {!
 Determine if the next square is safe.!
 if (such a square exists){!
! place a queen in the square!
! placeQueens(currColumn+1) // try next column!

 if (no queen safe in currColumn+1) {!
! ! remove queen from currColumn !
! ! ! try the next square in that col.!

 } !
 }!
 }!
}!

CS200 - Recursion

7

Example

Q

Q

Q

Q

Q

1 2 3 4 5 6 7 8

1

3
5
2
4

CS200 - Recursion 8

Hit ‘Dead End’

Q

Q

Q

Q

Q

1 2 3 4 5 6 7 8

1

3
5
2
4 8

CS200 - Recursion

3

9

Backtrack

Q

Q

Q

Q

Q

1 2 3 4 5 6 7 8

1

3
5
2
8
7
2

CS200 - Recursion 10 CS200 - Recursion

Mathematical Induction in Dominos
We have N dominos -- If we
push the 1st domino, will N
dominos fall?
We should show:

q  If we push the 1st one, it falls
q  For all dominos, if the previous

domino falls, next domino falls

11

Process:
Show something works the first time
Assume that it works for this time
Show it will work for the next time, under the assumption
Conclusion, it works all the time

CS200 - Recursion 12

Principle of Mathematical Induction

n  To prove that P(n) is true for all positive integers n, where
P(n) is a propositional function,

n  Two parts of mathematical induction
q  Basis step: verify that P(1) is true
q  Inductive step: Show that the conditional statement

P(k)àP(k+1) is true for all (positive, or non-negative)
integers k.

n  P(n): Propositional function
n  P(k): Inductive hypothesis

CS200 - Recursion

4

Example

n  Use mathematical induction to show that,
1+2+3+ … + n = n(n+1)/2

for all positive integer n.

13

Question 1. What is the
propositional function here?

Question 2. What is the
inductive hypothesis?

CS200 - Recursion 14

Recursion

n  Specifies a solution to one or more base
cases

n  Then demonstrates how to derive the
solution to a problem of an arbitrary size
q  From the smaller size of the same problem.

CS200 - Recursion

15

Mathematical Induction

n  Proves a property about the natural numbers by
q  Proving the property about a base case and
q  Then proving that the property must be true for an

arbitrary natural N if it is true for the natural number
smaller than N.

n  In this section, we will use MI to prove:
q  (1) correctness of the recursive algorithm
q  (2) deriving the amount of recursive work it

requires

CS200 - Recursion 16

Correctness of the Recursive Factorial
Method

Specification of the
problem

(e.g., Mathematical
definition, SW
requirements) Algorithm

(e.g., pseudo
code)

Does your algorithm satisfy the specification of the problem?

CS200 - Recursion

5

17

Correctness of the Recursive Factorial
Method

Definition of Factorial
 factorial(n) = n (n – 1) (n – 2) … 1 for any integer n > 0

 factorial(0) = 1

Definition of method fact(N)
 1: fact (in n: integer): integer!

2: if (n is 0) {!
3: return 1!
4: } else {!
5: return n* fact(n-1)!
6: }!

CS200 - Recursion 18

Prove that the method fact computes
the factorial of its arguments
Basis step:

 fact(0) = 1
Inductive Step:
Show that for an arbitrary positive integer k, if

fact(k) returns k!, fact(k+1) returns (k+1)!
Assume that, fact(k) = k (k-1) (k-2) … 2 1
For n = k+1,
Show that fact(k+1) returns (k+1) k (k-1) (k-2) … 2 1

CS200 - Recursion

19

Deriving the amount of recursive work

n  The Towers of Hanoi Example
n  Only one disk may be moved at a time.
n  No disk may be placed on top of a smaller disk.

CS200 - Recursion 20

States in the Towers of Hanoi

Source Destination Spare
CS200 - Recursion

6

21

Recursive Solution

solveTowers (in count: integer, in source: Pole, in
destination: Pole, in spare:Pole)!

 if (count is 1) {!

 Move a disk directly from source to destination!

 } else{!

 solveTowers(count-1, source, spare, destination)!

 solveTowers(1, source, destination, spare)!

 solveTowers(count-1, spare, destination, source)!

 }!

!

CS200 - Recursion 22

Example with 3 disks

SolveTower(3,A,B,C)

SolveTower(2,A,C,B) SolveTower(1,A,B,C) SolveTower(2,C,B,A)

SolveTower(1,A,B,C)

SolveTower(1,A,C,B)

SolveTower(1,B,C,A)

SolveTower(1,C,A,B)

SolveTower(1,C,B,A)

SolveTower(1,A,B,C)

CS200 - Recursion

23

Cost of Towers of Hanoi

n  If we have N disks, how many moves does
solveTowers() make to solve the problem?

n  From the software
 moves(1) = 1
 move(N) = move(N-1)+1+move(N-1) (if N>1)
n  A closed form formula for the number of moves

that solveTowers requires for N disks:
 moves(N) = 2N - 1 (for all N>=1)

n  Is this true for the solveTowers() method with N
disks?

CS200 - Recursion 24

Proof

n  Basis Step
q  Show that the property is true for N = 1.
 21 - 1 = 1, which is consistent with the recurrence
relation’s specification that moves(1) = 1

n  Inductive Step
q  Property is true for an arbitrary k è property is

true for k+1
q  Assume that the property is true for N = k
 moves(k) = 2k-1

q  Show that the property is true for N = k + 1

CS200 - Recursion

7

25

Proof – cont.

n  moves(k+1) = 2 * moves(k) + 1
 = 2 * (2k -1) +1

 = 2k+1 -1
Therefore the inductive proof is complete.

CS200 - Recursion

