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CS200: Recursion  

Prichard Ch. 6.1 & 6.3 
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Backtracking 

n  Problem solving technique that involves 
guesses at a solution. 

n  Retrace steps in reverse order and try new 
sequence of steps  
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Depth First Search 

n  Looking for a path in a 
maze 

n  Strategy:   
q  Prioritize directions:  right, 

straight or left. 
q  At a dead end “backtrack” 

and try a different direction 
 
n  Recursive solution? 
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The Eight Queens Problem 

Place 8 Queens! 
No queen can attack 
any other queens. 
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Solution with recursion and backtracking 

placeQueen (in currColumn:integer)!
if ( currColumn > 8) {  

The problem is solved!
} else {!
   while (unconsidered squares exist in currColumn and the!
          problem is unsolved) {!
       Determine if the next square is safe.!
       if (such a square exists){!
!       place a queen in the square!
!       placeQueens(currColumn+1) // try next column!

          if (no queen safe in currColumn+1) {!
! !          remove queen from currColumn !
! ! !   try the next square in that col.!

          }  !
       }!
    }!
}!
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Hit ‘Dead End’ 
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Backtrack 
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Mathematical Induction in Dominos 
We have N dominos -- If we 
push the 1st domino, will N 
dominos fall? 
We should show: 

q  If we push the 1st one, it falls 
q  For all dominos, if the previous 

domino falls, next domino falls 
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Process: 
Show something works the first time 
Assume that it works for this time 
Show it will work for the next time, under the assumption 
Conclusion, it works all the time 
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Principle of Mathematical Induction 

n  To prove that P(n) is true for all positive integers n, where 
P(n) is a propositional function,  

n  Two parts of mathematical induction 
q  Basis step: verify that P(1) is true 
q  Inductive step: Show that the conditional statement 

P(k)àP(k+1) is true for all (positive, or non-negative) 
integers k. 

n  P(n): Propositional function 
n  P(k): Inductive hypothesis  
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Example 

n  Use mathematical induction to show that,  
1+2+3+ … + n = n(n+1)/2 

for all positive integer n. 
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Question 1. What is the 
propositional function here? 

Question 2. What is the 
inductive hypothesis? 

CS200 - Recursion 14 

Recursion 

n  Specifies a solution to one or more base 
cases 

n  Then demonstrates how to derive the 
solution to a problem of an arbitrary size  
q  From the smaller size of the same problem. 
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Mathematical Induction 

n  Proves a property about the natural numbers by  
q  Proving the property about a base case and  
q  Then proving that the property must be true for an 

arbitrary natural N if it is true for the natural number 
smaller than N. 

n  In this section, we will use MI to prove:  
q  (1) correctness of the recursive algorithm 
q  (2) deriving the amount of recursive work it 

requires 
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Correctness of the Recursive Factorial 
Method 

Specification of the 
problem 

(e.g., Mathematical 
definition, SW 
requirements) Algorithm 

(e.g., pseudo 
code) 

Does your algorithm satisfy the specification of the problem? 
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Correctness of the Recursive Factorial 
Method 

Definition of Factorial 
        factorial(n) = n (n – 1) (n – 2) … 1  for any integer n > 0 

     factorial(0) = 1 
 
Definition of method fact(N) 
        1: fact (in n: integer): integer!

2:     if (n is 0) {!
3:        return 1!
4:     } else {!
5:        return n* fact(n-1)!
6:     }!
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Prove that the method fact computes 
the factorial of its arguments 
Basis step: 

  fact(0) = 1 
Inductive Step: 
Show that for an arbitrary positive integer k, if 

fact(k) returns k!, fact(k+1) returns (k+1)! 
Assume that, fact(k) = k (k-1) (k-2) … 2 1 
For n = k+1, 
Show that fact(k+1) returns (k+1) k (k-1) (k-2) … 2 1 
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Deriving the amount of recursive work  

n  The Towers of Hanoi Example 
n  Only one disk may be moved at a time. 
n  No disk may be placed on top of a smaller disk. 
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States in the Towers of Hanoi 

Source Destination Spare 
CS200 - Recursion 



6 

21 

Recursive Solution 

solveTowers (in count: integer, in source: Pole, in 
destination: Pole, in spare:Pole)!

   if (count is 1) {!

       Move a disk directly from source to destination!

   } else{!

       solveTowers(count-1, source, spare, destination)!

       solveTowers(1, source, destination, spare)!

       solveTowers(count-1, spare, destination, source)!

   }!

!
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Example with 3 disks 

SolveTower(3,A,B,C) 

SolveTower(2,A,C,B) SolveTower(1,A,B,C) SolveTower(2,C,B,A) 

SolveTower(1,A,B,C) 

SolveTower(1,A,C,B) 

SolveTower(1,B,C,A) 

SolveTower(1,C,A,B) 

SolveTower(1,C,B,A) 

SolveTower(1,A,B,C) 
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Cost of Towers of Hanoi 

n  If we have N disks, how many moves does 
solveTowers() make to solve the problem? 

n  From the software 
        moves(1) = 1 
        move(N) = move(N-1)+1+move(N-1) (if N>1) 
n  A closed form formula for the number of moves 

that solveTowers requires for N disks: 
     moves(N) = 2N - 1 (for all N>=1)  

n  Is this true for the solveTowers() method with N 
disks? 
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Proof 

n  Basis Step 
q  Show that the property is true for N = 1.  
    21 - 1 = 1, which is consistent with the recurrence 
relation’s specification that moves(1) = 1 

n  Inductive Step 
q  Property is true for an arbitrary k è property is 

true for k+1 
q  Assume that the property is true for N = k 
      moves(k) = 2k-1 

q  Show that the property is true for N = k + 1 
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Proof – cont. 

n  moves(k+1) = 2 * moves(k) + 1   
                      = 2 * (2k -1) +1 

                          = 2k+1 -1 
Therefore the inductive proof is complete. 

CS200 - Recursion 


