(CS200: Recursion


CS200-Rcursion



CS200-Recursion


Mathematical Induction in Dominos
We have N dominos -- If we push the $1^{\text {st }}$ domino, will N dominos fall?
We should show:

- If we push the $1^{\text {st }}$ one, it falls
- For all dominos, if the previous domino falls, next domino falls


## Process:

Show something works the first time
Assume that it works for this time
Show it will work for the next time, under the assumption Conclusion, it works all the time


## Principle of Mathematical Induction

- To prove that $P(n)$ is true for all positive integers $n$, where $P(n)$ is a propositional function,
- Two parts of mathematical induction
- Basis step: verify that $P(1)$ is true
- Inductive step: Show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all (positive, or non-negative) integers $k$.
- $\mathrm{P}(\mathrm{n})$ : Propositional function
- $P(k)$ : Inductive hypothesis


- Specifies a solution to one or more base cases
- Then demonstrates how to derive the solution to a problem of an arbitrary size
- From the smaller size of the same problem.

CS200-Rccursion


```
Specification of the
``` problem
e.g., Mathematica definition, SW requirements)

Algorithm
(e.g., pseudo code)

Does your algorithm satisfy the specification of the problem?

\section*{Correctness of the Recursive Factorial Method}

Definition of Factorial
factorial \((n)=n(n-1)(n-2) \ldots l\) for any integer \(n>0\)
factorial(0) \(=1\)
```

Definition of method fact(N)
1: fact (in n: integer): integer
2: if (n is 0) {
4: } return
5:

```
\(\qquad\)

\section*{Deriving the amount of recursive work \\ \(\stackrel{c 5200}{c \mid c}\)皿}
- The Towers of Hanoi Example
- Only one disk may be moved at a time.
- No disk may be placed on top of a smaller disk.


CS200-Rccusion
Prove that the method fact computes the factorial of its arguments

\section*{Basis step:}
\[
\operatorname{fact}(0)=1
\]

\section*{Inductive Step:}
Show that for an arbitrary positive integer \(k\), if fact \((k)\) returns \(k\) !, fact \((k+1)\) returns ( \(k+1\) )!
Assume that, \(\operatorname{fact}(k)=k(k-1)(k-2) . . .21\)
For \(n=k+1\),
Show that fact \((k+1)\) returns \((k+1) k(k-1)(k-2) . . .21\)
CS200-Rccursion
18

\begin{tabular}{|l}
\hline Recursive Solution \\
\begin{tabular}{l} 
solveTowers (in count: integer, in source: Pole, in \\
destination: Pole, in spare:Pole) \\
if (count is 1) \{ \\
\(\quad\) Move a disk directly from source to destination \\
\} else\{ \\
\(\quad\)\begin{tabular}{l} 
solveTowers(count-1, source, spare, destination) \\
solveTowers(1, source, destination, spare) \\
solveTowers(count-1, spare, destination, source)
\end{tabular} \\
\(\} \quad\) cs200-Rccusion
\end{tabular} \\
\hline
\end{tabular}


\section*{Proof}
- Basis Step
- Show that the property is true for \(\mathrm{N}=1\).
\(2^{1}-1=1\), which is consistent with the recurrence relation's specification that \(\operatorname{moves}(1)=1\)
- Inductive Step
- Property is true for an arbitrary \(k \rightarrow\) property is true for \(k+1\)
- Assume that the property is true for \(\mathrm{N}=\mathrm{k}\)
\[
\operatorname{moves}(k)=2^{k}-1
\]
- Show that the property is true for \(N=k+1\)
\begin{tabular}{l}
\begin{tabular}{rl} 
Proof-cont. \\
- moves \((k+1)\) & \(=2 *\) moves \((k)+1\) \\
\(=\) & \(2 *\left(2^{k}-1\right)+1\) \\
\(=2^{k+1}-1\)
\end{tabular} \\
Therefore the inductive proof is complete. \\
\hline
\end{tabular}```

