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 CS200: Trees 

Rosen Ch. 10.1 & 10.3 
Walls Ch. 11 
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Tree grows top to bottom! 

Only one parent!  
(except for the root node) 

Applications – File System  

CS200 - Trees 3 

Applications – Expression Tree 
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Applications - Parse Trees 
Used in compilers to check syntax 

assignment 
statement 

identifier = expression ; 

x 
+ expression expression 

y 

identifier number 

1 
5 CS200 - Trees 

Decision trees 
n  Example:  a tree for deciding whether to wait for a table at a 

restaurant 

6 CS200 - Trees 
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Question : Can we model this with  
a Tree Data Structure? 

subtree 

Tree Terminology 

Node 

Edge 

parent 

root 

leaf 

interior node 

path 
Degree? 

Depth/Level? 

Height? 
child 

The parent child relationship is generalized to the 
relationship of ancestor and descendant 

All the defs are in page  
525 of the textbook 8 CS200 - Trees 
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Binary Trees 
n  A binary tree is a set T of nodes such that either 

q  T is empty, or  
q  T is partitioned into three disjoint subsets: 

n  A single node r, the root 
n  Two possibly empty sets that are binary trees, called left and 

right subtrees of r 

right subtree 

root 

left subtree 
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Tree Terminology 

n  Level/depth of a node n in a tree T 
q  If n is the root of T, it is at level 1 
q  If n is not the root of T, its level is 1 greater 

than the level of its parent 
 

10 CS200 - Trees 

Height of a Binary Tree 

n  If T is empty, its height is 0. 

n  If T is a non empty binary tree,  
      height(T) = 1 + max{height(TL), height(TR)}	
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root 

TL TR 

Height of TL 

Height of TR 
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Binary trees with same nodes  
but different heights 
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Trees - more definitions 
n  m-ary tree  

q  Every internal vertex has no more than m children. 
q  Our main focus will be binary trees 

n  Full m-ary tree 
q  all interior nodes have m children 

n  Perfect m-ary tree 
q  Full m-ary tree where all leaves are at the same level 

  
n  Perfect binary tree 

q  number of leaf nodes:  2h - 1 
q  total number of nodes: 2h - 1 
q  Recurrence relations for the # of leaf nodes and total # of 

nodes? 
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More definitions 

n  Complete binary tree of height h 
q  zero or more rightmost leaves not 

present at level h 
n  A binary tree T of height h is 

complete if 
q  All nodes at level h – 2 and above 

have two children each, and 
q  When a node at level h – 1 has 

children, all nodes to its left at the 
same level have two children each, 
and 

q  When a node at level h – 1 has one 
child, it is a left child 
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More definitions 

n  balanced tree  
q  Height of any node’s right subtree differs from left 

subtree by 0 or 1 

n  A complete tree is balanced 

15 CS200 - Trees 

Full? Complete? Balanced? Binary tree? 
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Operations of the Binary Tree 

n  Add and remove node and subtrees 
n  Retrieve and set the data in the root  

n  Determine whether the tree is empty 

17 CS200 - Trees 

General operations 
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Root!
Left subtree!
Right subtree 

creteBinaryTree()!
makeEmpty()!
isEmpty()!
getRootItem()!
setRootItem()!
attachLeft()!
attachRight()!
attachLeftSubtree()!
attachRightSubtree()!
detachLeftSubtree()!
detachRightSubtree()!
getLeftSubtree()!
getRightSubtree()!

CS200 - Trees 

Example 
tree1.setRootItem(“F”)!
tree1.attachLeft(“G”)!

tree2.setRootItem(“D”)!
tree2.attachLeftSubtree(tree1)!

tree3.setRootItem(“B”)!
tree3.attachLeftSubtree(tree2)!
tree3.attachRight(“E”)!

tree4.setRootItem(“C”)!

binTree.createBinaryTree(“A”, tree3, tree4)!
!
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Array based representation 
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 A binary tree of names 

Jane 

Bob Tom 

Alan Ellen Nancy 

index item leftChild rightChild 
0 Jane 1 2 

1 Bob 3 4 

2 Tom 5 -1 

3 Alan -1 -1 

4 Ellen -1 -1 

5 Nancy -1 -1 

6 ? -1 -1 

7 ? -1 -1 

8 ? -1 -1 

. . . 

. . . 

. . . 

. . . 

0 

3 

root 

free 
Free list: Array –
based Linked List  

CS200 - Trees 
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Array based representation  
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public class TreeNode<T>{!
!private T item;!
!private int leftChild;!
!private int rightChild;!
!…!
!public TreeNode(){!
!}!
!public int getItem(){!
!   return item;!
!}!
!public int getLeftChild(){!
!   return leftChild;!
!}!
!public int getRightChild(){!
! !return rightChild;!
!} … setters!

}!

0 1 2 3 4 5 

CS200 - Trees 

Array based representation  
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!

public class BinaryTreeArrayBased<T> {!
!protected final int MAX_NODES = 100; !!
!protected ArrayList<TreeNode<T>> tree;!
!protected int root;!
!protected int free; //index of next unused array 

location!
!…!

!
public BinaryTreeArrayBased<T> () {!

!tree  = new ArrayList<TreeNode<T>>()’ !
}!
!
public creatTree(TreeNode<T> _root){!

!root = 0;!
!tree.set(0, _root);!
!free++;!

}!
!!

!

CS200 - Trees 

An array based representation 

 
q  C 

23 

!
!!

public TreeNode<T> getRootItem(){!
!return tree.get(root);!

} !
public TreeNode<T> getRight(){!

!return tree.get(root.getRightChild());!
}!
public TreeNode<T> getLeft(){!

!return tree.get(root.getLeftChild());!
}!
public void makeEmpty(){!

!how?!
}!
!
More methods..!
!
! CS200 - Trees 

Complete Binary Tree 

24 

Level-by-level numbering of  a complete binary tree 

0:Jane 

1:Bob 2:Tom 

3:Alan 4:Ellen 5:Nancy 

index item 
0 Jane 
1 Bob 
2 Tom 
3 Alan 
4 Ellen 
5 Karen 
6 
7 

If  the binary tree is complete, an array-based 
implementation can be memory-efficient. 

CS200 - Trees 
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A reference-based representation 
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leftChild rightChild 

item 

root 

leftChild rightChild 

item 

leftChild rightChild 

item 

HOW? 

CS200 - Trees 

TreeNode 

leftChild rightChild 

item 

root 

leftChild rightChild 

item 

leftChild rightChild 

item 

A reference-based representation 
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Tree 

CS200 - Trees 

Reference based: Node 
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public TreeNode<T> {!
!T item;!
!TreeNode<T> leftChild;!
!TreeNode<T> rightChild;!

!
!public TreeNode(T newItem){!
!  item = newItem;!

     leftChild = null;!
     rightChild = null;!

!}!
!

!public TreeNode(T newItem, TreeNode<T> left, TreeNode<T> 
! ! ! !right){!
! !item = newItem;!
! !leftChild = left;!
! !rightChild = right;!
!}!

}!
!

Step 1. TreeNode 

CS200 - Trees 

Reference based: Tree 
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!
!
!
!

Step 2. Tree (BinaryTree) 
public class BinaryTree<T> {!
!public BinaryTree(){}!
!public BinaryTree(T rootItem, BinaryTree<T> 

!leftTree,BinaryTree<T> rightTree){!
!  root = new TreeNode<T> (rootItem, null, null);!
!  attachLeftSubtree(leftTree);!
!  attachRightSubtree(rightTree);!
!}!
!public void setRootItem(T newItem){!
! !if(root!=null){!
! ! !root.item = newItem;!
! !}!
! !else {!
! ! !root = new TreeNode<T>(newItem, null, null);!
! !}!
!}!

 CS200 - Trees 
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Reference based: Add Child 

29 

!

!!
!
!
!
!
!

public void attachLeft(T newItem){!
!if (!isEmpty()&& root.leftChild == null) {!
! !root.leftChild = new TreeNode<T>(newItem, null, 
null);!

!}!
}!
!
public void attachRight(T newItem){!
!if (!isEmpty()&& root.leftChild == null) {!
! !root.rightChild = new TreeNode<T>(newItem, null, 
null);!

!}!
}!

CS200 - Trees 

Reference based: Add Subtree 
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public void attachLeftSubtree(BinaryTree<T> leftTree)!
!throws TreeException{!
!if (isEmpty()) {!
! !throw new TreeException(“TreeException:Empty tree.”);!
!}!
!else if (root.leftChild != null){!
!   throw new TreeException(“TreeException: cannot 
overwrite left subtree.”);!

!}!
!else{!
! !root.leftChild = leftTree.root;!
! !leftTree.makeEmpty();!
!}!

}!

CS200 - Trees 

Reference based: Remove Subtree 
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public BinaryTree<T> detachLeftSubtree(BinaryTree<T> 
!leftTree) throws TreeException{!

!
!if (isEmpty()) {!
!throw new TreeException(“TreeException:Empty tree.”);!
!}!
!else{!
! !BinaryTree<T> leftTree;!
! !leftTree = new BinaryTree<T>(root.leftChild);!
! !root.leftChild = null;!
! !return leftTree;!
!} !!

}!
!

CS200 - Trees 

Traversal Algorithms 

n  The traversal of a tree is the process of “visiting” 
every node of the tree 
q  Display a portion of the data in the node. 
q  Process the data in the node 

n  Because a tree is not linear, there are many 
ways that this can be done. 

32 CS200 - Trees 
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Breadth-first traversal  

n  Breadth-first processes the tree level by 
level starting at the root and handling all the 
nodes at a particular level from left to right. 

33 CS200 - Trees 

Breadth-first traversal 

34 

60 

20 70 

10 40 

30 50 

60 – 20 – 70 – 10 – 40 – 30 – 50  
CS200 - Trees 

Depth-first traversals 

n  Three choices of when to visit the root r.  
1.  Before it traverses both of r’s subtrees 
2.  After it has traversed r’s left subtree (before it 

traverses r’s right subtree) 
3.  After it has traversed both of r’s subtrees 

n  Preorder, inorder, and postorder 

35 CS200 - Trees 

Depth First: Preorder traversal 

n  Preorder traversal processes the 
information at the root, followed by the entire 
left subtree and concluding with the entire 
right subtree. 

36 CS200 - Trees 
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R L 
R 

L 

Right 
subtree 

Left subtree 

Depth First: Preorder traversal 
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60 

20 70 

10 40 

30 50 

60 – 20 – 10 – 40 – 30 – 50 – 70  
CS200 - Trees 

Depth First: Inorder traversal 

n  Inorder traversal processes all the 
information in the left subtree before 
processing the root.  

n  It finishes by processing all the information in 
the right subtree. 

38 CS200 - Trees 

Depth First: Inorder traversal 

39 

60 

20 70 

10 40 

30 50 

Left subtree 

Right 
subtree 

L 

R L R 

10 – 20 – 30 – 40 – 50 – 60 – 70  
CS200 - Trees 

Depth First: Postorder traversal 

n  Postorder traversal processes the left 
subtree, then the right subtree and finishes 
by processing the root. 

40 CS200 - Trees 
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Depth First: Postorder traversal 

41 

60 

20 70 

10 40 

30 50 
Left subtree 

Right 
subtree 

L 

R 
L R 

10 – 30 – 50 – 40 – 20 – 70 – 60  
CS200 - Trees 

Preorder algorithm 

preorder (in binTree:BinaryTree)!
!if (binTree is not empty){!
! !display the data in the root of binTree !
! !preorder(Left subtree of binTree’s root)!
! !preorder(Right subtree of binTree’s root)!
!}!

42 CS200 - Trees 

Implementing Traversal with  
Iterators 

n  Use a queue to order the nodes according to 
the type of traversal. 

n  Initialize iterator by type (pre, post or in) and 
enqueue all nodes in order necessary for 
traversal 

n  dequeue in next operation 

43 CS200 - Trees 

What is Java Iterator? 

n  An iterator allows going over all the elements of 
the collection in sequence 

n  Unlike Enumeration, iterator allows the caller to 
remove an element from the underlying 
collection 
q  java.util.Iterator 

n  boolean hasNext() 
n  Object next() 
n  void remove() 

q  Java.util.Enumeration 
n  Boolean hasMoreElement() 
n  Object nextElement() 

44 CS200 - Trees 
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Using TreeIterator for Preorder 

45 

60 

20 70 

10 40 

30 50 

60 20 70 10 40 30 50 

Front End 
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Using TreeIterator for Inorder 
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60 

20 70 

10 40 

30 50 

10 20 70 30 40 50 60 

Front End 
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Using TreeIterator for Postorder 
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60 

20 70 

10 40 

30 50 

10 30 60 50 40 20 70 

Front End 
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LevelOrder Algorithm 

n  Use a queue to track unvisited nodes 
n  For each node that is dequeued, 

q  enqueue each of its children 
q  until queue empty 

n  Also called: breadth first traversal 

48 CS200 - Trees 
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LevelOrder 

A 

B 

D 

G 

C 

E 

H 

F 

I 

Queue Output 
Init [A]  - 

Step 1 [B,C]  A 

Step 2 [C,D]  A B 

Step 3 [D,E,F]  A B C 

Step 4 [E,F,G,H]  A B C D 

Step 5 [F,G,H]  A B C D E 

Step 6 [G,H,I]  A B C D E F 

Step 7 [H,I]  A B C D E F G 

Step 8 [I]  A B C D E F G H 

Step 9 [ ]  A B C D E F G H I 

49 CS200 - Trees 

Categories of Data Structures 

n  Position-oriented data structures:  access is 
by position. 

n  Value-oriented structures:  access is by 
value. 

n  Examples? 

50 CS200 - Trees 

Binary Search Trees 

n  Definition:  A binary tree T is a binary search tree if 
for every node n in T: 
q  n’s value is greater than all values in its left subtree TL 
q  n’s value is less than all values in its right subtree TR 

q  TR and TL are binary search trees 

51 CS200 - Trees 

Clicker Q 
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8 

4 9 

3 5 

6 

5 

5 

6 7 

Tree A 

Tree B 
Tree C 

Which are binary search tree(s)? 
a.  Tree A only  
b.  Tree A and B 
c.  Tree A, B and C 
d.  Tree A and C 

CS200 - Trees 
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BST 

n  Organization 
q  the sequence of adding and 

removing influences the 
shape of the tree 

n  Search / Retrieval 
q  Using inorder traversal 
q  On a search key 

1, 2, 3 ,4 ,5 

1 

2 

3 

4 

5 

1 

2 

4 

5 3 

2, 1, 4, 5, 3 
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BST Methods 

insert(in newIterm:TreeItemType)

q  inserts newItem into a BST whose items have distinct search 

keys that differ from newItem’s 
delete(in searchKey: KeyType) throws TreeException


q  Deletes the item whose search key equals searchKey. If none 
exists, the operation fails. 

retrieve(in searchKey:KeyType):TreeItemType 
q  Returns the item whose search key equals searchKey. Returns 

null if not found. 

54 CS200 - Trees 

BST - Search 

compare value with node 
q  empty: not found 
q  == : found 
q  <   : search in the left sub-tree 
q  >   : search in the right sub-tree 

5 

2 

1 

7 

4 6 9 

3 

Locate 4 in the BST ! 
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BST – Insert 

12 

3 

1 

19 

5 16 22 

4 

Add 6  

6 

56 CS200 - Trees 
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BST – Insert 

n  Always add as a leaf – in the position where 
the search method would look for it 

n  Find leaf location 
q  <   : add to the left sub-tree 
q  >   : add to the right sub-tree 

n  Special Cases: 
q  already there 
q  empty tree   

12 

3 

1 

19 

5 16 22 

4 6 
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Inserting an item 
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)


// Inserts newItem into the binary search tree of which 


//treeNode is the root



Let parentNode be the parent of the empty subtree at which 
search terminates when it seeks newItem’s search key



if (search terminated at parentNode’s left subtree) {


 
set leftChild of parentNode to reference newItem


}


else {


 
set rightChild of parentNode to reference newItem


}
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Inserting an item 
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)



// Inserts newItem into the binary search tree of which 


// treeNode is the root


if (treeNode is null) {


 
create new node with newItem as data


 
return new node }


else if (newItem.getKey() < treeNode.getItem().getKey()) {


 
treeNode.setLeft(insertItem(treeNode.getLeft(), newItem)) 


            return treeNode}


else { 


 
treeNode.setRight(insertItem(treeNode.getRight(),newItem))


 
return treeNode }


 



How is insertItem used in the code? 
59 CS200 - Trees 

BST – Insert 

12 

19 3 

1 

treenode



if (newItem.getKey() < treeNode.getItem().getKey()) {


 
treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))


newItem.getKey() : 6



60 CS200 - Trees 
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BST – Insert 

treenode



else { 

          treeNode.setRight(insertItem(treeNode.getRight(),newItem))


newItem.getKey() : 6


12 

19 3 

1 
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BST – Insert 

6 

treenode



if (treeNode is null) {


create new node with newItem as data


return new node


new node



newItem.getKey() <- 6


12 

19 3 

1 
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BST – Insert 

6 

treenode



treeNode.setRight(insertItem(treeNode.getRight(),newItem))

return treeNode


12 

19 3 

1 
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Delete: Cases to Consider 

n  Delete something that is not there 
q  Throw exception 

n  Delete a leaf 
q  Easy, just set link from parent to null 

n  Delete a node with one child 
n  Delete a node with two children 

64 CS200 - Trees 
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Delete  
Case 1: one child 

5 

8 

6 

8 

6 

Other child becomes root 

delete(5) 
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Delete 
Case 2: two children 

5 

2 

1 

8 

4 6 9 

7 

delete(5) 

Strategy:  replace node with a node that is easier to remove! 
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Digression:  inorder traversal 
of BST 
n  In order: 

q  go left 
q  visit the node 
q  go right 

n  The keys of an inorder traversal of a BST 
are in sorted order! 
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Delete 
Case 2: two children 

5 

2 

1 

8 

4 6 9 

Replace root with its leftmost right descendant and replace that node 
with its right child, if necessary (an easy delete case). 
That node is the inorder successor of the root 

7 

6 

2 

1 

8 

4 7 9 

delete(5) 
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Delete 
Case 2: two children 

5 

2 

1 

8 

4 6 9 

Replace root with its leftmost right descendant and replace that node 
with its right child, if necessary (an easy delete case). 
That node is the inorder successor of the root 

7 

6 

2 

1 

8 

4 7 9 

delete(5) 
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Delete 
Case 2: two children 
1.  Find the inorder successor of N’s search 

key. 
q  The node whose search key comes immediately 

after N’s search key 
q  The inorder successor is in the leftmost node in 

N’s right subtree. 

2.  Copy the item of the inorder successor, M, to 
the deleting node N. 

3.  Remove the node M from the tree. 
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Delete Pseudo Code I 

deleteItem(in rootNode:TreeNode, in searchKey:KeyType): TreeNode


if (rootNode is null){ throw TreeException}


else if (searchKey equals key in rootNode item) { 
//found it


 
newRoot = deleteNode(rootNode, searchKey) 



 
return newRoot }


else if (searchKey < key in rootNode item) { 
//search left


 
newLeft = deleteItem(rootNode.getLeft(), searchKey)


 
rootNode.setLeft(newLeft)


 
return rootNode }


else { 
// search right


 
newRight = deleteItem(rootNode.getRight(), searchKey)


 
rootNode.setRight(newRight)


 
return rootNode }
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 remove it 

repair links to 
child nodes 

Delete Pseudo Code II 
deleteNode(in treeNode:TreeNode):TreeNode



// deletes the item in the node referenced by treeNode


// returns root of resulting subtree 



if (treeNode is leaf) { return null }


else if (treeNode has only 1 child c) {


 
if (c is left child) { return treeNode.getLeft() }


 
else { return treeNode.getRight() }  }





else { // find leftmost child on right as replacement


 
replacementItem = findLeftMost(treeNode.getRight())  // grab it 


 
replacementRChild = deleteLeftmost(treeNode.getRight())


 
Set treeNode’s item to replacementItem


 
Set treeNode’s right child to replacementRChild


 
return treeNode}


72 CS200 - Trees 

Case 1: replace root w/child 

Case 2: replace root w/leftmost child on right 
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Delete Pseudo Code III 

deleteLeftmost(in treeNode:TreeNode):TreeNode


// Deletes the node that is the leftmost descendant of the tree rooted at treeNode


// Returns subtree of deleted node 


if (treeNode.getLeft() is null)    // found the node to delete


 
{ return treeNode.getRight() }


else { // still replacing left nodes


 
replacementLChild = deleteLeftmost(treeNode.getLeft())


 
treeNode.setLeft(replacementLChild)


 
return treeNode


}
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Complexity of BST Operations 

Average Worst 

search 

insert 

delete 

O(n) 

O(n) 

O(n) 

O(log n) 

O(log n) 

O(log n) 

Compare with a sorted list 
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Properties of Trees 
1.  An undirected tree has a unique simple path between 

any two of its vertices. 
2.  A tree with n vertices has n-1 edges.  
3.  A full m-ary tree with i internal vertices contains n=mi

+1 vertices.  
4.  A full m-ary tree with  

a)  n vertices has i=(n-1)/m internal vertices and 
l=[(m-1)n+1]/m leaves, 

b)  i internal vertices has n=mi+1 vertices and l=(m-1)i+1 
leaves, 

c)  l leaves has n=(ml-1)/(m-1) vertices and i=(l-1)/(m-1) 
internal vertices. 

5.  There are at most      leaves in an m-ary tree of height h. 

€ 

mh

75 

Tree Sort 

n  Uses the binary search tree ADT to sort an array of 
records according to search-key 

n  Efficiency 
q  Average case: O(n * log n) 
q  Worst case: O(n2) 

76 CS200 - Trees 
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Example of Binary sorting 

77 

60 

20 70 

10 40 

30 50 

60 20 10 40 70 50 30 

10 20 30 40 50 60 70 

Create Tree  

Traversal Tree 

CS200 - Trees 

n-ary General tree  

n  Tree with no more than n children. 
n  How can we implement it? 
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n = 3 

79 

A 

B D 

E G F H I 

C Oldest 
child 

Or first 
child 

A 
. . 

A 
. . . 

Case 1: using 2 references 

Case 2: using 3 references 

CS200 - Trees 

Case 1: Using 2 references 

80 

A 

A A A 

A A A 

A A 

CS200 - Trees 



21 

Case 2: Using 3 references 

81 

A 

I H 

G E F 

D B C 
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