
1

 CS200: Trees

Rosen Ch. 10.1 & 10.3
Walls Ch. 11

1 CS200 - Trees CS200 - Trees 2

A

B C D

G

A

B C D

G

Tree grows top to bottom!

Only one parent!
(except for the root node)

Applications – File System

CS200 - Trees 3

Applications – Expression Tree

CS200 - Trees 4

2

Applications - Parse Trees
Used in compilers to check syntax

assignment
statement

identifier = expression ;

x
+ expression expression

y

identifier number

1
5 CS200 - Trees

Decision trees
n  Example: a tree for deciding whether to wait for a table at a

restaurant

6 CS200 - Trees

CS200 - Trees 7

Question : Can we model this with
a Tree Data Structure?

subtree

Tree Terminology

Node

Edge

parent

root

leaf

interior node

path
Degree?

Depth/Level?

Height?
child

The parent child relationship is generalized to the
relationship of ancestor and descendant

All the defs are in page
525 of the textbook 8 CS200 - Trees

3

Binary Trees
n  A binary tree is a set T of nodes such that either

q  T is empty, or
q  T is partitioned into three disjoint subsets:

n  A single node r, the root
n  Two possibly empty sets that are binary trees, called left and

right subtrees of r

right subtree

root

left subtree

9 CS200 - Trees

Tree Terminology

n  Level/depth of a node n in a tree T
q  If n is the root of T, it is at level 1
q  If n is not the root of T, its level is 1 greater

than the level of its parent

10 CS200 - Trees

Height of a Binary Tree

n  If T is empty, its height is 0.

n  If T is a non empty binary tree,
 height(T) = 1 + max{height(TL), height(TR)}	

11

root

TL TR

Height of TL

Height of TR

CS200 - Trees

Binary trees with same nodes
but different heights

12

C

A
B

D E

F

G

A

C

B

D

E

F

G

A
B C

D E F G

Tree A

Tree B

Tree D

CS200 - Trees

4

Trees - more definitions
n  m-ary tree

q  Every internal vertex has no more than m children.
q  Our main focus will be binary trees

n  Full m-ary tree
q  all interior nodes have m children

n  Perfect m-ary tree
q  Full m-ary tree where all leaves are at the same level

n  Perfect binary tree

q  number of leaf nodes: 2h - 1
q  total number of nodes: 2h - 1
q  Recurrence relations for the # of leaf nodes and total # of

nodes?

13 CS200 - Trees

More definitions

n  Complete binary tree of height h
q  zero or more rightmost leaves not

present at level h
n  A binary tree T of height h is

complete if
q  All nodes at level h – 2 and above

have two children each, and
q  When a node at level h – 1 has

children, all nodes to its left at the
same level have two children each,
and

q  When a node at level h – 1 has one
child, it is a left child

14 CS200 - Trees

More definitions

n  balanced tree
q  Height of any node’s right subtree differs from left

subtree by 0 or 1

n  A complete tree is balanced

15 CS200 - Trees

Full? Complete? Balanced? Binary tree?

16

A

B
C D

E

CS200 - Trees

5

Operations of the Binary Tree

n  Add and remove node and subtrees
n  Retrieve and set the data in the root

n  Determine whether the tree is empty

17 CS200 - Trees

General operations

18

Root!
Left subtree!
Right subtree

creteBinaryTree()!
makeEmpty()!
isEmpty()!
getRootItem()!
setRootItem()!
attachLeft()!
attachRight()!
attachLeftSubtree()!
attachRightSubtree()!
detachLeftSubtree()!
detachRightSubtree()!
getLeftSubtree()!
getRightSubtree()!

CS200 - Trees

Example
tree1.setRootItem(“F”)!
tree1.attachLeft(“G”)!

tree2.setRootItem(“D”)!
tree2.attachLeftSubtree(tree1)!

tree3.setRootItem(“B”)!
tree3.attachLeftSubtree(tree2)!
tree3.attachRight(“E”)!

tree4.setRootItem(“C”)!

binTree.createBinaryTree(“A”, tree3, tree4)!
!

19 CS200 - Trees

Array based representation

20

 A binary tree of names

Jane

Bob Tom

Alan Ellen Nancy

index item leftChild rightChild
0 Jane 1 2

1 Bob 3 4

2 Tom 5 -1

3 Alan -1 -1

4 Ellen -1 -1

5 Nancy -1 -1

6 ? -1 -1

7 ? -1 -1

8 ? -1 -1

. . .

. . .

. . .

. . .

0

3

root

free
Free list: Array –
based Linked List

CS200 - Trees

6

Array based representation

21

public class TreeNode<T>{!
!private T item;!
!private int leftChild;!
!private int rightChild;!
!…!
!public TreeNode(){!
!}!
!public int getItem(){!
! return item;!
!}!
!public int getLeftChild(){!
! return leftChild;!
!}!
!public int getRightChild(){!
! !return rightChild;!
!} … setters!

}!

0 1 2 3 4 5

CS200 - Trees

Array based representation

22

!

public class BinaryTreeArrayBased<T> {!
!protected final int MAX_NODES = 100; !!
!protected ArrayList<TreeNode<T>> tree;!
!protected int root;!
!protected int free; //index of next unused array

location!
!…!

!
public BinaryTreeArrayBased<T> () {!

!tree = new ArrayList<TreeNode<T>>()’ !
}!
!
public creatTree(TreeNode<T> _root){!

!root = 0;!
!tree.set(0, _root);!
!free++;!

}!
!!

!

CS200 - Trees

An array based representation

q  C

23

!
!!

public TreeNode<T> getRootItem(){!
!return tree.get(root);!

} !
public TreeNode<T> getRight(){!

!return tree.get(root.getRightChild());!
}!
public TreeNode<T> getLeft(){!

!return tree.get(root.getLeftChild());!
}!
public void makeEmpty(){!

!how?!
}!
!
More methods..!
!
! CS200 - Trees

Complete Binary Tree

24

Level-by-level numbering of a complete binary tree

0:Jane

1:Bob 2:Tom

3:Alan 4:Ellen 5:Nancy

index item
0 Jane
1 Bob
2 Tom
3 Alan
4 Ellen
5 Karen
6
7

If the binary tree is complete, an array-based
implementation can be memory-efficient.

CS200 - Trees

7

A reference-based representation

25

leftChild rightChild

item

root

leftChild rightChild

item

leftChild rightChild

item

HOW?

CS200 - Trees

TreeNode

leftChild rightChild

item

root

leftChild rightChild

item

leftChild rightChild

item

A reference-based representation

26

Tree

CS200 - Trees

Reference based: Node

27

public TreeNode<T> {!
!T item;!
!TreeNode<T> leftChild;!
!TreeNode<T> rightChild;!

!
!public TreeNode(T newItem){!
! item = newItem;!

 leftChild = null;!
 rightChild = null;!

!}!
!

!public TreeNode(T newItem, TreeNode<T> left, TreeNode<T>
! ! ! !right){!
! !item = newItem;!
! !leftChild = left;!
! !rightChild = right;!
!}!

}!
!

Step 1. TreeNode

CS200 - Trees

Reference based: Tree

28

!
!
!
!

Step 2. Tree (BinaryTree)
public class BinaryTree<T> {!
!public BinaryTree(){}!
!public BinaryTree(T rootItem, BinaryTree<T>

!leftTree,BinaryTree<T> rightTree){!
! root = new TreeNode<T> (rootItem, null, null);!
! attachLeftSubtree(leftTree);!
! attachRightSubtree(rightTree);!
!}!
!public void setRootItem(T newItem){!
! !if(root!=null){!
! ! !root.item = newItem;!
! !}!
! !else {!
! ! !root = new TreeNode<T>(newItem, null, null);!
! !}!
!}!

 CS200 - Trees

8

Reference based: Add Child

29

!

!!
!
!
!
!
!

public void attachLeft(T newItem){!
!if (!isEmpty()&& root.leftChild == null) {!
! !root.leftChild = new TreeNode<T>(newItem, null,
null);!

!}!
}!
!
public void attachRight(T newItem){!
!if (!isEmpty()&& root.leftChild == null) {!
! !root.rightChild = new TreeNode<T>(newItem, null,
null);!

!}!
}!

CS200 - Trees

Reference based: Add Subtree

30

public void attachLeftSubtree(BinaryTree<T> leftTree)!
!throws TreeException{!
!if (isEmpty()) {!
! !throw new TreeException(“TreeException:Empty tree.”);!
!}!
!else if (root.leftChild != null){!
! throw new TreeException(“TreeException: cannot
overwrite left subtree.”);!

!}!
!else{!
! !root.leftChild = leftTree.root;!
! !leftTree.makeEmpty();!
!}!

}!

CS200 - Trees

Reference based: Remove Subtree

31

public BinaryTree<T> detachLeftSubtree(BinaryTree<T>
!leftTree) throws TreeException{!

!
!if (isEmpty()) {!
!throw new TreeException(“TreeException:Empty tree.”);!
!}!
!else{!
! !BinaryTree<T> leftTree;!
! !leftTree = new BinaryTree<T>(root.leftChild);!
! !root.leftChild = null;!
! !return leftTree;!
!} !!

}!
!

CS200 - Trees

Traversal Algorithms

n  The traversal of a tree is the process of “visiting”
every node of the tree
q  Display a portion of the data in the node.
q  Process the data in the node

n  Because a tree is not linear, there are many
ways that this can be done.

32 CS200 - Trees

9

Breadth-first traversal

n  Breadth-first processes the tree level by
level starting at the root and handling all the
nodes at a particular level from left to right.

33 CS200 - Trees

Breadth-first traversal

34

60

20 70

10 40

30 50

60 – 20 – 70 – 10 – 40 – 30 – 50
CS200 - Trees

Depth-first traversals

n  Three choices of when to visit the root r.
1.  Before it traverses both of r’s subtrees
2.  After it has traversed r’s left subtree (before it

traverses r’s right subtree)
3.  After it has traversed both of r’s subtrees

n  Preorder, inorder, and postorder

35 CS200 - Trees

Depth First: Preorder traversal

n  Preorder traversal processes the
information at the root, followed by the entire
left subtree and concluding with the entire
right subtree.

36 CS200 - Trees

10

R L
R

L

Right
subtree

Left subtree

Depth First: Preorder traversal

37

60

20 70

10 40

30 50

60 – 20 – 10 – 40 – 30 – 50 – 70
CS200 - Trees

Depth First: Inorder traversal

n  Inorder traversal processes all the
information in the left subtree before
processing the root.

n  It finishes by processing all the information in
the right subtree.

38 CS200 - Trees

Depth First: Inorder traversal

39

60

20 70

10 40

30 50

Left subtree

Right
subtree

L

R L R

10 – 20 – 30 – 40 – 50 – 60 – 70
CS200 - Trees

Depth First: Postorder traversal

n  Postorder traversal processes the left
subtree, then the right subtree and finishes
by processing the root.

40 CS200 - Trees

11

Depth First: Postorder traversal

41

60

20 70

10 40

30 50
Left subtree

Right
subtree

L

R
L R

10 – 30 – 50 – 40 – 20 – 70 – 60
CS200 - Trees

Preorder algorithm

preorder (in binTree:BinaryTree)!
!if (binTree is not empty){!
! !display the data in the root of binTree !
! !preorder(Left subtree of binTree’s root)!
! !preorder(Right subtree of binTree’s root)!
!}!

42 CS200 - Trees

Implementing Traversal with
Iterators

n  Use a queue to order the nodes according to
the type of traversal.

n  Initialize iterator by type (pre, post or in) and
enqueue all nodes in order necessary for
traversal

n  dequeue in next operation

43 CS200 - Trees

What is Java Iterator?

n  An iterator allows going over all the elements of
the collection in sequence

n  Unlike Enumeration, iterator allows the caller to
remove an element from the underlying
collection
q  java.util.Iterator

n  boolean hasNext()
n  Object next()
n  void remove()

q  Java.util.Enumeration
n  Boolean hasMoreElement()
n  Object nextElement()

44 CS200 - Trees

12

Using TreeIterator for Preorder

45

60

20 70

10 40

30 50

60 20 70 10 40 30 50

Front End

CS200 - Trees

Using TreeIterator for Inorder

46

60

20 70

10 40

30 50

10 20 70 30 40 50 60

Front End

CS200 - Trees

Using TreeIterator for Postorder

47

60

20 70

10 40

30 50

10 30 60 50 40 20 70

Front End

CS200 - Trees

LevelOrder Algorithm

n  Use a queue to track unvisited nodes
n  For each node that is dequeued,

q  enqueue each of its children
q  until queue empty

n  Also called: breadth first traversal

48 CS200 - Trees

13

LevelOrder

A

B

D

G

C

E

H

F

I

Queue Output
Init [A] -

Step 1 [B,C] A

Step 2 [C,D] A B

Step 3 [D,E,F] A B C

Step 4 [E,F,G,H] A B C D

Step 5 [F,G,H] A B C D E

Step 6 [G,H,I] A B C D E F

Step 7 [H,I] A B C D E F G

Step 8 [I] A B C D E F G H

Step 9 [] A B C D E F G H I

49 CS200 - Trees

Categories of Data Structures

n  Position-oriented data structures: access is
by position.

n  Value-oriented structures: access is by
value.

n  Examples?

50 CS200 - Trees

Binary Search Trees

n  Definition: A binary tree T is a binary search tree if
for every node n in T:
q  n’s value is greater than all values in its left subtree TL
q  n’s value is less than all values in its right subtree TR

q  TR and TL are binary search trees

51 CS200 - Trees

Clicker Q

52

8

4 9

3 5

6

5

5

6 7

Tree A

Tree B
Tree C

Which are binary search tree(s)?
a.  Tree A only
b.  Tree A and B
c.  Tree A, B and C
d.  Tree A and C

CS200 - Trees

14

BST

n  Organization
q  the sequence of adding and

removing influences the
shape of the tree

n  Search / Retrieval
q  Using inorder traversal
q  On a search key

1, 2, 3 ,4 ,5

1

2

3

4

5

1

2

4

5 3

2, 1, 4, 5, 3

53 CS200 - Trees

BST Methods

insert(in newIterm:TreeItemType)

q  inserts newItem into a BST whose items have distinct search

keys that differ from newItem’s
delete(in searchKey: KeyType) throws TreeException

q  Deletes the item whose search key equals searchKey. If none
exists, the operation fails.

retrieve(in searchKey:KeyType):TreeItemType
q  Returns the item whose search key equals searchKey. Returns

null if not found.

54 CS200 - Trees

BST - Search

compare value with node
q  empty: not found
q  == : found
q  < : search in the left sub-tree
q  > : search in the right sub-tree

5

2

1

7

4 6 9

3

Locate 4 in the BST !

55 CS200 - Trees

BST – Insert

12

3

1

19

5 16 22

4

Add 6

6

56 CS200 - Trees

15

BST – Insert

n  Always add as a leaf – in the position where
the search method would look for it

n  Find leaf location
q  < : add to the left sub-tree
q  > : add to the right sub-tree

n  Special Cases:
q  already there
q  empty tree

12

3

1

19

5 16 22

4 6

57 CS200 - Trees

Inserting an item
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)

// Inserts newItem into the binary search tree of which

//treeNode is the root

Let parentNode be the parent of the empty subtree at which
search terminates when it seeks newItem’s search key

if (search terminated at parentNode’s left subtree) {

set leftChild of parentNode to reference newItem

}

else {

set rightChild of parentNode to reference newItem

}

58 CS200 - Trees

Inserting an item
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)

// Inserts newItem into the binary search tree of which

// treeNode is the root

if (treeNode is null) {

create new node with newItem as data

return new node }

else if (newItem.getKey() < treeNode.getItem().getKey()) {

treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))

 return treeNode}

else {

treeNode.setRight(insertItem(treeNode.getRight(),newItem))

return treeNode }

How is insertItem used in the code?
59 CS200 - Trees

BST – Insert

12

19 3

1

treenode

if (newItem.getKey() < treeNode.getItem().getKey()) {

treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))

newItem.getKey() : 6

60 CS200 - Trees

16

BST – Insert

treenode

else {

 treeNode.setRight(insertItem(treeNode.getRight(),newItem))

newItem.getKey() : 6

12

19 3

1

61 CS200 - Trees

BST – Insert

6

treenode

if (treeNode is null) {

create new node with newItem as data

return new node

new node

newItem.getKey() <- 6

12

19 3

1

62 CS200 - Trees

BST – Insert

6

treenode

treeNode.setRight(insertItem(treeNode.getRight(),newItem))

return treeNode

12

19 3

1

63 CS200 - Trees

Delete: Cases to Consider

n  Delete something that is not there
q  Throw exception

n  Delete a leaf
q  Easy, just set link from parent to null

n  Delete a node with one child
n  Delete a node with two children

64 CS200 - Trees

17

Delete
Case 1: one child

5

8

6

8

6

Other child becomes root

delete(5)

65 CS200 - Trees

Delete
Case 2: two children

5

2

1

8

4 6 9

7

delete(5)

Strategy: replace node with a node that is easier to remove!

66 CS200 - Trees

Digression: inorder traversal
of BST
n  In order:

q  go left
q  visit the node
q  go right

n  The keys of an inorder traversal of a BST
are in sorted order!

67 CS200 - Trees

Delete
Case 2: two children

5

2

1

8

4 6 9

Replace root with its leftmost right descendant and replace that node
with its right child, if necessary (an easy delete case).
That node is the inorder successor of the root

7

6

2

1

8

4 7 9

delete(5)

68 CS200 - Trees

18

Delete
Case 2: two children

5

2

1

8

4 6 9

Replace root with its leftmost right descendant and replace that node
with its right child, if necessary (an easy delete case).
That node is the inorder successor of the root

7

6

2

1

8

4 7 9

delete(5)

69 CS200 - Trees

Delete
Case 2: two children
1.  Find the inorder successor of N’s search

key.
q  The node whose search key comes immediately

after N’s search key
q  The inorder successor is in the leftmost node in

N’s right subtree.

2.  Copy the item of the inorder successor, M, to
the deleting node N.

3.  Remove the node M from the tree.

70 CS200 - Trees

Delete Pseudo Code I

deleteItem(in rootNode:TreeNode, in searchKey:KeyType): TreeNode

if (rootNode is null){ throw TreeException}

else if (searchKey equals key in rootNode item) {
//found it

newRoot = deleteNode(rootNode, searchKey)

return newRoot }

else if (searchKey < key in rootNode item) {
//search left

newLeft = deleteItem(rootNode.getLeft(), searchKey)

rootNode.setLeft(newLeft)

return rootNode }

else {
// search right

newRight = deleteItem(rootNode.getRight(), searchKey)

rootNode.setRight(newRight)

return rootNode }

71 CS200 - Trees

 remove it

repair links to
child nodes

Delete Pseudo Code II
deleteNode(in treeNode:TreeNode):TreeNode

// deletes the item in the node referenced by treeNode

// returns root of resulting subtree

if (treeNode is leaf) { return null }

else if (treeNode has only 1 child c) {

if (c is left child) { return treeNode.getLeft() }

else { return treeNode.getRight() } }

else { // find leftmost child on right as replacement

replacementItem = findLeftMost(treeNode.getRight()) // grab it

replacementRChild = deleteLeftmost(treeNode.getRight())

Set treeNode’s item to replacementItem

Set treeNode’s right child to replacementRChild

return treeNode}

72 CS200 - Trees

Case 1: replace root w/child

Case 2: replace root w/leftmost child on right

19

Delete Pseudo Code III

deleteLeftmost(in treeNode:TreeNode):TreeNode

// Deletes the node that is the leftmost descendant of the tree rooted at treeNode

// Returns subtree of deleted node

if (treeNode.getLeft() is null) // found the node to delete

{ return treeNode.getRight() }

else { // still replacing left nodes

replacementLChild = deleteLeftmost(treeNode.getLeft())

treeNode.setLeft(replacementLChild)

return treeNode

}

73 CS200 - Trees

Complexity of BST Operations

Average Worst

search

insert

delete

O(n)

O(n)

O(n)

O(log n)

O(log n)

O(log n)

Compare with a sorted list

74 CS200 - Trees

CS200 - Trees

Properties of Trees
1.  An undirected tree has a unique simple path between

any two of its vertices.
2.  A tree with n vertices has n-1 edges.
3.  A full m-ary tree with i internal vertices contains n=mi

+1 vertices.
4.  A full m-ary tree with

a)  n vertices has i=(n-1)/m internal vertices and
l=[(m-1)n+1]/m leaves,

b)  i internal vertices has n=mi+1 vertices and l=(m-1)i+1
leaves,

c)  l leaves has n=(ml-1)/(m-1) vertices and i=(l-1)/(m-1)
internal vertices.

5.  There are at most leaves in an m-ary tree of height h.

€

mh

75

Tree Sort

n  Uses the binary search tree ADT to sort an array of
records according to search-key

n  Efficiency
q  Average case: O(n * log n)
q  Worst case: O(n2)

76 CS200 - Trees

20

Example of Binary sorting

77

60

20 70

10 40

30 50

60 20 10 40 70 50 30

10 20 30 40 50 60 70

Create Tree

Traversal Tree

CS200 - Trees

n-ary General tree

n  Tree with no more than n children.
n  How can we implement it?

78 CS200 - Trees

n = 3

79

A

B D

E G F H I

C Oldest
child

Or first
child

A
. .

A
. . .

Case 1: using 2 references

Case 2: using 3 references

CS200 - Trees

Case 1: Using 2 references

80

A

A A A

A A A

A A

CS200 - Trees

21

Case 2: Using 3 references

81

A

I H

G E F

D B C

CS200 - Trees

