Part 10. Graphs

CS 200 Algorithms and Data Structures

Outline

- Introduction
- Terminology
- Implementing Graphs
- Graph Traversals
- Topological Sorting
- Spanning Trees
- Minimum Spanning Trees
- Shortest Paths
- Circuits

Graphs

A collection of nodes and edges

What can this represent?
- A computer network
- Abstraction of a map
- Social network

Directed Graphs

A collection of nodes and directed edges

Sometimes we want to represent directionality:
- Unidirectional network connections
- One way streets
- The web

Web graph: produced by Ross Richardson and rendered by Fan Chung Graham
Example

• "Follow the money" example (the international science and engineering visualization challenge, 2009, Science magazine and National Science Foundation) – http://www.sciencemag.org/site/special/vis2009/show/

• Reference

Outline

• Introduction
• Terminology
• Implementing Graphs
• Graph Traversals
• Topological Sorting
• Spanning Trees
• Minimum Spanning Trees
• Shortest Paths
• Circuits

Graph Terminology

Two vertices are adjacent if they are connected by an edge. An edge is incident on two vertices. Degree of a vertex: number of edges incident on it.

Graph Terminology

Self loop (loop): an edge that connects a vertex to itself.
Simple graph: no self loops and no two edges connect the same vertices.
Multigraph: may have multiple edges connecting the same vertices.
Pseudograph: multigraph with self-loops.

Directed Graphs

Indegree: number of incoming edges
Outdegree: number of outgoing edges

The degree of a vertex

• The degree of a vertex in an undirected graph
 – the number of edges incident with it
 – except that a loop at a vertex contributes twice to the degree of that vertex.
Theorem 10-1: The Handshaking Theorem

- Let \(G = (V, E) \) be an undirected graph. Then
 \[
 \sum_{v \in V} \deg(v) = 2|E|
 \]

- How many edges are there in a graph with 10 vertices each of degree six?

 \[- 10 \times 6 / 2 = 30\]

Theorem 10-2

- An undirected graph has an even number of vertices of odd degree.

- Proof:

Theorem 10-3

- Let \(G = (V, E) \) be a graph with directed edges. Then
 \[
 \sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) - |E|
 \]

 \([\text{indegree}] \quad [\text{outdegree}]\)

Complete Graphs

- Simple graph that contains exactly one edge between each pair of distinct vertices.

Cycles

The cycle \(C_n, n \geq 3 \), consists of \(n \) vertices \(v_1, v_2, \ldots, v_n \) and edges \(\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\} \).
Wheels

We obtain the wheel W_n when we add an additional vertex to the cycle C_n, for $n \leq 3$, and connect this new vertex to each of the n vertices in C_n, by new edges.

n-Cubes (n-dimensional hypercube)

Bipartite Graphs

A simple graph G is called bipartite, if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2.

Outline

- Introduction
- Terminology
 - **Implementing Graphs**
 - Graph Traversals
 - Topological Sorting
 - Spanning Trees
 - Minimum Spanning Trees
 - Shortest Paths
 - Circuits

Graph ADT

- Create
- Empty?
- Number of vertices?
- Number of edges?
- Edge exists between two vertices?
- Add a vertex
- Add an edge
- Delete a vertex (and any edges adjacent to it)
- Delete an edge
- Retrieve a vertex

Path:

- A path is a sequence of edges.
- (e_1, e_2, e_3) is a path of length 3 from v_1 to v_4.
- In a simple graph a path can be represented as a sequence of vertices.
Classes for a Weighted Undirected Graph

- Vertex: ???
- Edge: ???
- Graph:
 - organized collection of vertices and edges

1. Adjacency Matrix Implementation
2. Adjacency List Implementation

Adjacency Matrix Implementation

- Directed graph: \(A[i][j] \) is 1 if there is an edge from vertex \(i \) to vertex \(j \)
- Undirected graph: \(A[i][j] \) is 1 if there is an edge between vertex \(i \) and vertex \(j \).
 - What’s the relationship between \(A[i][j] \) and \(A[j][i] \)?
- Weighted graph: \(A[i][j] \) gives the weight of the edge

Example

- Adjacency matrix?

```
  d e f g
  d 0 1 1 1
  e 1 0 0 1
  f 1 0 0 0
  g 1 1 0 0
```

Adjacency List Implementation

- For undirected graphs each edge appears twice. Why?
Which Implementation?

- Which implementation best supports common Graph Operations:
 - Is there an edge between vertex i and vertex j?
 - Find all vertices adjacent to vertex j
- Which best uses space?

Implementation: Edge Class

```java
class Edge {
    private Integer v, w; // vertices
    private int weight;
    public Edge(Integer first, Integer second, int edgeWeight) {
        v = first; w = second; weight = edgeWeight;
    }
    public int getWeight() {
        return weight;
    }
    public Integer getV() {
        return v;
    }
    public Integer getW() {
        return w;
    }
}
```

Implementation: Graph Class

```java
public void addEdge(Integer v, Integer w, int weight){
    // precondition: the vertices v and w must exist
    // postcondition: the edge (v,w) is part of the graph
    adjList.get(v).put(w, weight);
    adjList.get(w).put(v, weight);
    numEdges++;
}
```

Graph Terminology

A subgraph of a graph G = (V,E) is a graph (V’,E’) such that V’ is a subset of V and, E’ is a subset of E.

Connected Components

- An undirected graph is called connected if there is a path between every pair of vertices of the graph.
- A connected component of a graph G is a connected subgraph of G that is not a proper subgraph of another connected subgraph of G.

G = [(a,b,c,d,e,f,g), E]

G1 = [(a,b,c), E1]

G2 = [(d,e,f,g), E2]
Other Representations

• Incidence Matrices
 Let $G = (V,E)$ be an undirected graph. Suppose that v_1, v_2, \ldots, v_n are the vertices and e_1, e_2, \ldots, e_m are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $M = [m_{ij}]$, where

 $m_{ij} = \begin{cases}
 1 & \text{when edge } e_j \text{ is incident with } v_i, \\
 0 & \text{otherwise}.
 \end{cases}$

Example

Isomorphism of Graphs

• Definition
 The simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there is a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if $f(a)$ and $f(b)$ are adjacent in G_2, for all a and b in V_1. Such a function f is called an isomorphism.

Outline

• Introduction
• Terminology
• Implementing Graphs
 • Graph Traversals
 • Topological Sorting
 • Spanning Trees
 • Minimum Spanning Trees
 • Shortest Paths
 • Circuits

Graph Traversal
Graph Traversal

- **Depth First Search (DFS)**

  ```java
  dfs(in v:Vertex)
  mark v as visited
  for (each unvisited vertex u adjacent to v) 
    dfs(u)
  ```

 - Need to track visited nodes
 - Order of visiting nodes is not completely specified
 - Is there a difference between directed and undirected graphs?
 - Which graph implementation?

Iterative DFS

```java
dfs(in v:Vertex)
  s - stack for keeping track of active vertices
  s.push(v)
  mark v as visited
  while(!s.isEmpty)
    if (no unvisited vertices adjacent to the vertex on top of the stack) {
      s.pop() \backtrack
    } else {
      select unvisited vertex u adjacent to vertex on top of the stack
      s.push(u)
      mark u as visited
    }
```

- **BFS Example**

- **Breadth First Search (BFS)**

  ```java
  bfs(in v:Vertex)
  q - queue of nodes to be processed
  q.enqueue(v)
  mark v as visited
  while(!q.isEmpty)
    w = q.dequeue()
    for (each unvisited vertex u adjacent to w) {
      mark u as visited
      q.enqueue(u)
    }
  ```

- **BFS**
 - Similar to level order tree traversal
 - DFS is a last visited first explored strategy
 - BFS is a first visited first explored strategy
Graph Traversal

- Properties of BFS and DFS:
 - Visit all vertices that are reachable from a given vertex
 - Therefore DFS(v) and BFS(v) visit a connected component
- Computation time for DFS, BFS for a connected graph: \(O(|V| + |E|) \)

Reachability

- Reachability
 - \(v \) is reachable from \(u \)
 - if there is a (directed) path from \(u \) to \(v \)
 - solve using BFS or DFS
- Transitive Closure (\(G^* \))
 - \(G^* \) has edge from \(u \) to \(v \) if \(v \) is reachable from \(u \).