Part 6. Trees (3)

Outline

- B-Trees
- External Methods

B-tree of degree m

- All leaves are at the same level
- Each node contains between \(m-1\) and \(\text{floor}((m-2)/2)\) records (except for the root).
- Each internal node has one more child than it has records.
 - An exception to this rule is the root node
 - As few as one record
 - As few as two children
- A 2-3 tree is a B-tree of degree 3.

Example: A B-tree of degree 5

Inserting 55
Inserting 55

Splitting the Root node

Deleting 73

Deleting 73

Deleting 73

Recursive Merging

No sibling has (depth -1) items
→ Merge leaves
Outline

- B-Trees
- External Methods

Why external storage?

- External storage is for reading and writing data to a file.
- Data stored in a file exists beyond the execution period of a software.
- More scalable than internal memory.

Physical Storage Media (1/3)

- Cache-fastest and most costly form of storage; volatile; managed by the hardware/operating system.
- Main memory:
 - general-purpose machine instructions operate on data resident in main memory
 - fast access, but generally too small to store the entire dataset
 - sometimes referred to as core memory
 - volatile — contents of main memory are usually lost if a power failure or system crash occurs

Physical Storage Media (2/3)

- Optical storage – non-volatile. CD-ROM most popular form.
- Write-once, read-many (WORM) optical disks used for archival storage.
- Tape storage – non-volatile, used primarily for backup (to recover from disk failure), and for archival data
 - sequential-access — much slower than disk
 - very high capacity
 - tape can be removed from drive ⇒ storage costs much cheaper than disk

Physical Storage Media (3/3)
Records, Blocks, and Files

- The records of a file are organized into one or more blocks
 - Hardware configuration and the system software of the computer determine the size of the block
- Random accessing file
 - A program can read/write a given block from the file by specifying its block number
 - Reading or writing happens in the block level (not a records)
- Sequential accessing file
 - Records are accessed in a sequential order

Sequential Access Vs. Random Access

- Sequential Access
- Random Access

Using B-Trees to organize blocks of an external file

- Organize blocks of an external file into a tree structure
 - Use block numbers for child pointers
- Contains up-to three child points (for 2-3 tree)
 - For the null pointer, a child pointer value uses -1

Indexing data blocks

- Organize blocks of an external file into a tree structure
 - Use block numbers for child pointers
- Contains up-to three child points (for 2-3 tree)
 - For the null pointer, a child pointer value uses -1

How many children the nodes of the search tree can have?

- How big can m be?
- Each node must be large enough to accommodate m child pointers and m-1 records of the form <key, pointer>
- M should be the largest possible integer
 - M child pointers, and m-1 records can fit into a single block of the file
A full tree whose internal nodes have five children

The format of a single node

Insertion into a B-tree

1. Insert the data record into the data file
 - Find block \(p \) in the data file into which you can insert the new record
 - Block \(p \) is either any block with a vacant slot or a new block

2. Insert a corresponding index record into the index file

Deletion from a B-tree

1. Locate the index record in the index file
2. Delete the data record from the data file

Midterm Exam II