
 CS200: Stacks

n  Prichard Ch. 7

CS200 - Stacks 1

Linear, time-ordered structures

n  Data structures that reflect a temporal relationship
q  order of removal based on order of insertion

n  We will consider:
q  “first come,first serve”

n  first in first out - FIFO (queue)
q  “take from the top of the pile”

n  last in first out - LIFO (stack)

CS200 - Stacks 2

3 CS200 - Stacks

Stacks or queues?

What can we do with coin dispenser?

n  “push” a coin into the dispenser.
n  “pop” a coin from the dispenser.

n  “peek” at the coin on top, but don’t pop it.
n  “isEmpty” check whether this dispenser is

empty or not.

4 CS200 - Stacks

Stacks

n  Last In First Out (LIFO) structure
q  A stack of dishes in a cafe

n  Add/Remove done from same
end: the top 5

4
3
2
1

top

CS200 - Stacks 5

Possible Stack Operations

n  isEmpty(): determine whether stack is empty

n  push(): add a new item to the stack
n  pop(): remove the item added most recently
n  peek(): retrieve the item added most recently

6 CS200 - Stacks

Checking for balanced braces

n  How can we use a stack to determine
whether the braces in a string are balanced?

 abc{defg{ijk}{l{mn}}op}qr

abc{def}}{ghij{kl}m

CS200 - Stacks 7

Pseudocode

while (not at the end of the string){!
 if (the next character is a “{“){!
 aStack.push(“{“)!
 }!
 else if (the character is a “}”) {!
 if(aStack.isEmpty()) ERROR!!!!
 else aStack.pop()!
 }!
}!
if(!aStack.isEmpty()) ERROR!!! !

8

Expressions
n  Types of Algebraic Expressions

q  Prefix
q  Postfix (RPN)
q  Infix

n  Prefix and postfix are easier to
parse. No ambiguity.

n  Postfix: operator applies to the
operands that immediately
precede it.

n  Examples:
1.  5 4 3 * -
2.  5 * 4 - 3
3.  * - 5 4 3

operands are written in
the conventional way

CS200 - Stacks 9

What type of expression is “5 * 4 3 –”?

A.  Prefix
B.  Infix
C.  Postfix
D.  None of the above (i.e., illegal)

CS200 - Stacks 10

Evaluating a Postfix Expression

while there are input tokens left

read the next token

if the token is a value

push it onto the stack.

else

//the token is a operator taking n arguments

pop the top n values from the stack and perform the operation

push the result on the stack

If there is only one value in the stack return it as the result

else

throw an exception"

CS200 - Stacks 11

Quick check

n  If the input string is “5 3 + 2 *”, which of the
following could be what the stack looks like
when trying to parse it?

CS200 - Stacks 12

2
3
5

+
3
5

2
8

A B C

Stack Interface
push(StackItemType newItem)

q  adds a new item to the top of the stack

StackItemType pop() throws StackException
q  deletes the item at the top of the stack and returns it
q  Exception when deletion fails

StackItemType peek() throws StackException
q  returns the top item from the stack, but does not remove it
q  Exception when retrieval fails

boolean isEmpty()
q  returns true if stack empty, false otherwise

Preconditions? Postconditions?

CS200 - Stacks 13

Comparison of Implementations

n  Options for Implementation:
q  Array based implementation
q  ArrayList based implementation
q  Reference based implementation

n  What are the advantages and disadvantages of
each implementation?

n  Let’s look at an Linked List based
implementation

n  In P1 you implement an ArrayList based
implementation

CS200 - Stacks 14

Stack API in Java

public class Stack<E>extends Vector<E>!
 Implemented Interfaces: Iterable<E>,
Collection<E>, List<E>, RandomAccess!

n  Stack extends Vector with operations that allow
a vector to be treated as a stack (push, pop,
peek, empty, search)

CS200 - Stacks 15

Stacks and Recursion

n  Most implementations of recursion maintain a
stack of activation records.

n  Within recursive calls, the most recently
executed activation record is stored at the top of
the stack.

16

Applications - the run-time stack

n  Nested method calls tracked on

call stack (aka run-time stack)
q  First method that returns is the last one

invoked
n  Element of call stack - activation

record
q  parameters
q  local variables
q  return address: pointer to next

instruction to be executed in calling
method

http://en.wikipedia.org/wiki/Image:Call_stack_layout.svg CS200 - Stacks 17

