

CS200:
Recursion and induction

Prichard Ch. 6.1 \& 6.3

Backtracking

- Problem solving technique that involves moves: guesses at a solution.
- Depth First Search: in case of failure retrace steps and try a new move in a state with still unexplored guesses
Think of it as walking through a tree shaped state space.

3 guesses here
2 guesses in each state here
leaf states can fail (F) or succeed (S)

F F F S F F F F F S F F F F F S F F

Found!

Depth First Search

－Looking for a path out of the maze
－Strategy：
－Prioritize directions：right， straight or left．
－At a dead end＂backtrack＂ and try a different direction
－Recursive solution？

The Eight Queens Problem

Place 8 Queens!

No queen can attack any other queens.

Solution with recursion and backtracking

```
placeQueen (in currColumn:integer)
if ( currColumn > 8) {
    The problem is solved
} else {
    while (unconsidered squares exist in currColumn and the
                problem is unsolved) {
            Determine if the next square is safe.
            if (such a square exists){
                place a queen in the square
                placeQueens(currColumn+1) // try next column
            if (no queen safe in currColumn+1) {
                                    remove queen from currColumn
                            try the next square in that column
            }
    }
    }
```

\}

Hit 'Dead End’

Backtrack

Backtrack: an 8 queens solution

The only symmetric one
There are 11 more "fundamental" solutions
see:
wikipedia.org/wiki/ Eight_queens_puzzle

Questions

- What is the maximum depth of the runt time stack for 8 Queens?
- How big could the call tree get?
- Specifies a solution to one or more base cases
- Then demonstrates how to derive the solution to a problem of an arbitrary size
- From solutions to smaller sized problems.

Correctness of the Recursive Factorial Method

Specification of the problem
(e.g., Mathematical definition, SW requirements)

Does your algorithm satisfy the specification of the problem?

Correctness of the Recursive Factorial
 Method

Definition of Factorial

$$
\begin{aligned}
& \text { factorial }(n)=n(n-1)(n-2) \ldots 1 \text { for any integer } n>0 \\
& \text { factorial }(0)=1
\end{aligned}
$$

Definition of method $\operatorname{fact}(N)$
1: fact (in n : integer): integer

```
2: if (n is 0) {
3: return 1
4: } else {
5: return n* fact(n-1)
6: }
```


Inductive proof fact computes the

Basis step:

$$
\operatorname{fact}(0)=1
$$

Inductive Step:

Show that for an arbitrary positive integer k, if $\operatorname{fact}(k)$ returns k !, then $\operatorname{fact}(k+1)$ returns $(k+1)$!
do it do it

The Towers of Hanoi Example

- Move pile of disks from source to destination
- Only one disk may be moved at a time.
- No disk may be placed on top of a smaller disk.

Recursive Solution

// pegs are numbers, via is computed
// number of moves are counted
// empty base case
public void hanoi(int n, int from, int to)\{
if $(n>0)$ \{
int via $=6$ - from - to;
hanoi(n-1,from, via);
System.out.println("move disk " + n + " from " + from + " to " + to); hanoi(n-1,via,to);
\}
\}
let's run it

Cost of Towers of Hanoi

- How many moves does hanoi(n) make?
- from the recursive code:

$$
\begin{aligned}
& \operatorname{moves}(1)=1 \\
& \operatorname{moves}(N)=\operatorname{moves}(N-1)+1+\operatorname{moves}(N-1)(\text { if } N>1)
\end{aligned}
$$

- By inspection, we can infer that a closed form formula for the number of moves:

$$
\operatorname{moves}(N)=2^{N}-1(\text { for all } N>=1)
$$

- Can we prove it?

Proof

- Basis Step
- Show that the property is true for $\mathrm{N}=1$.
$2^{1}-1=1$, which is consistent with the recurrence relation's specification that moves(1) = 1
- Inductive Step
- Property is true for an arbitrary $k \rightarrow$ property is true for $k+1$
- Assume that the property is true for $\mathrm{N}=\mathrm{k}$

$$
\operatorname{moves}(k)=2^{k}-1
$$

- Show that the property is true for $N=k+1$
- Do it, do it

Proof - cont.

- $\operatorname{moves}(k+1)=2 * \operatorname{moves}(k)+1$

$$
\begin{aligned}
& =2 *\left(2^{k}-1\right)+1 \\
& =2 * 2^{k}-2+1=2^{k+1}-1
\end{aligned}
$$

Therefore the inductive proof is complete.
$0+1+2 \ldots+n=n(n+1) / 2 \quad n=0,1,2 \ldots \ldots$ base: $0=0 * 1 / 2=0$ Check
step: assume: $\quad 0+1+2 \ldots+k=k(k+1) / 2$ show that $0+1+2 \ldots+k+(k+1)=(k+1)(k+2) / 2$

$$
\begin{aligned}
& 0+1+2 \ldots+k+(k+1)=k(k+1) / 2+(k+1)= \\
& k(k+1) / 2+2(k+1) / 2=k(k+1) / 2+2(k+1) / 2= \\
& (k+2)(k+1) / 2=(k+1)(k+2) / 2
\end{aligned}
$$

Check

