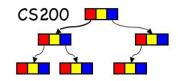


CS200: Priority Queues, Heaps

Prichard Ch. 12

Priority Queues



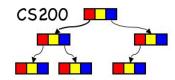
Characteristics

- Items are associated with a value: priority
- Provide access to one element at a time the one with the highest priority

Uses

- Operating systems
- Network management
 - Real time traffic usually gets highest priority when bandwidth is limited

Priority Queue ADT Operations

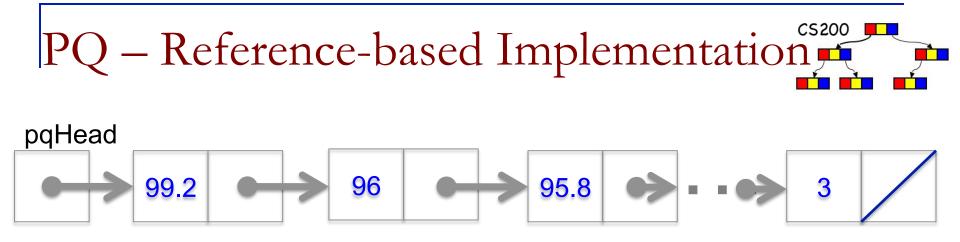


- 1. Create an empty priority queue createPQueue()
- 2. Determine whether empty
 pqIsEmpty():boolean
- 3. Insert new item

4. Retrieve and delete the item with the highest priority pqDelete():PQItemType

ArrayList ordered by priority

- pqInsert: find the correct position for add at that position, the ArrayList.add(i,item) method will shift the array elements to make room for the new item
- pqDelete: remove last item (at size()-1)
- Why did we organize it in increasing order?

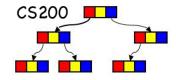


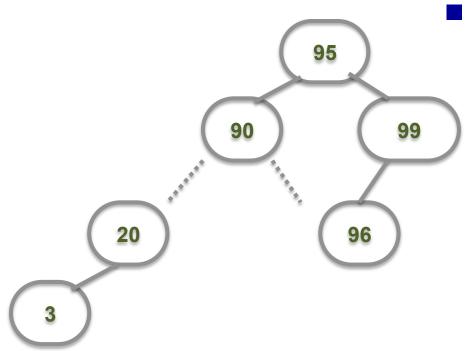
Reference-based implementation

Sorted in descending order

- Highest priority value is at the beginning of the linked list
- pqDelete returns the item that psHead references and changes pqHead to reference the next item.
- pqInsert must traverse the list to find the correct position for insertion.

PQ – BST Implementation

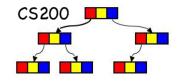




Binary search tree

- Where is the highest value of the nodes?
- pqInsert is easy, why?
 - at a new leaf, e.g.30
- pqDelete?
 - need to remove the max
 - also easy, why?
 - max has at most one child

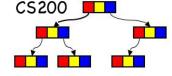
The problem with BST



- BST can get unbalanced so in the worst case pqInsert and pqDelete can get O(n)
- A more balanced tree structure would be better.
- What is a balanced binary tree structure?
 - Height of any node's right sub-tree differs from left sub-tree by 0 or 1
- What is a balanced binary tree structure with n nodes?
 - □ a complete binary tree

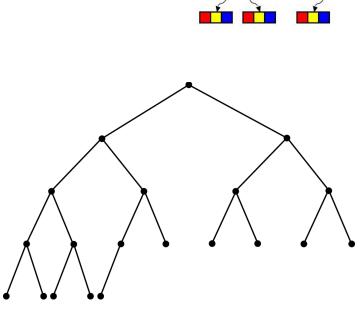
Recap tree definitions

- m-ary tree
 - Every internal vertex has no more than m children.
 - Our main focus will be binary trees
- Full m-ary tree
 - all interior nodes have m children
- Perfect m-ary tree
 - Full m-ary tree where all leaves are at the same level
- Perfect binary tree
 - number of leaf nodes: 2^{h-1}
 - total number of nodes: 2^h 1

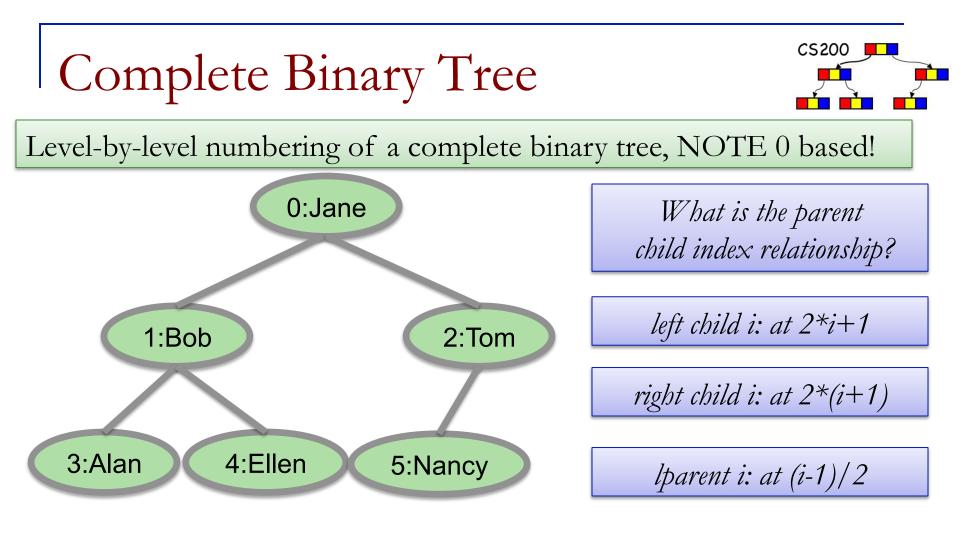


More tree definitions

- Complete binary tree of height h
 - zero or more rightmost leaves not present at level h
- A binary tree T of height h (Prichard) is complete if
 - All nodes at level h 2 and above have two children each, and
 - When a node at level h 1 has children, all nodes to its left at the same level have two children each, and
 - When a node at level h has one child, it is a left child
 - So the leaves at level h go from left to right
 - Complete binary tree is balanced

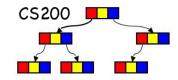


CS200



So we can store a complete binary tree in an array!!

Heap - Definition

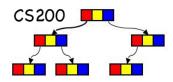


- A maximum heap (maxheap) is a complete binary tree that satisfies the following:
 - It is an empty tree

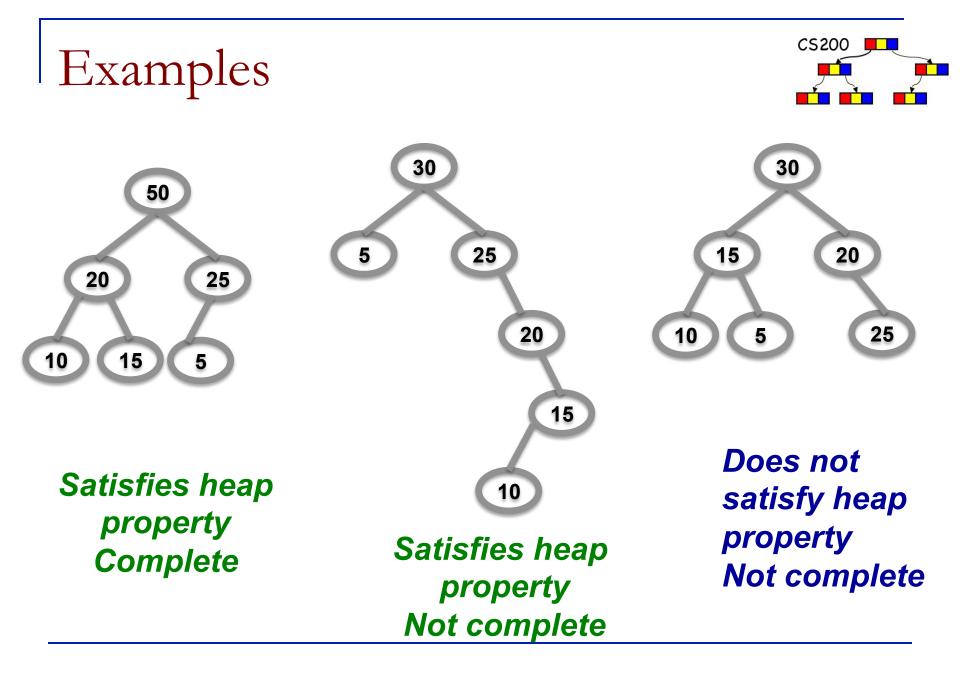
or it has the heap property:

- Its root contains a key greater or equal to the keys of its children
- Its left and right sub-trees are also maxheaps
- A minheap has the root less or equal children, and left and right sub trees are also minheaps

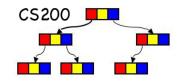
maxHeap Property Implications



- Implications of the heap property:
 - The root holds the maximum value (global property)
 - Values in descending order on every path from root to leaf
- Heap is NOT a binary search tree, as in a BST the nodes in the right sub tree of the root are larger than the root



Heap ADT



createHeap() // create empty heap

heapIsEmpty():boolean

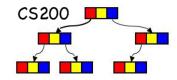
// determines if empty

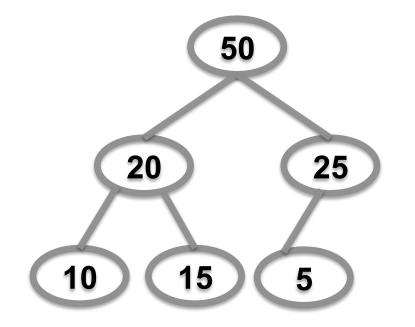
heapInsert(in newItem:HeapItemType)
throws HeapException

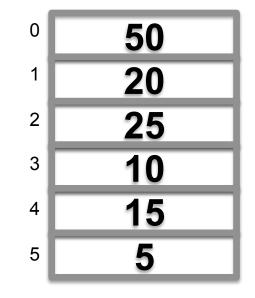
/* inserts newItem based on its search key.
Throws exception if heap full
This may not happen if e.g.implemented
with an ArrayList */

heapDelete():HeapItemType
 // retrieves and then deletes heap's root
 // item which has largest search key

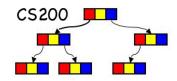
Array(List) Implementation







Array(List) Implementation

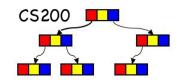


Traversal items:

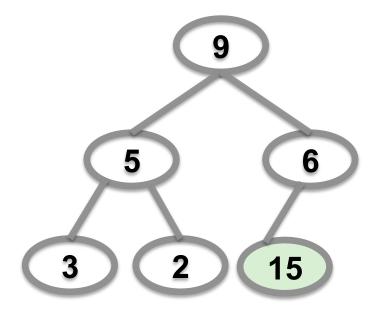
- Root at position 0
- Left child of position i at position 2*i+1
- Right child of position i at position 2*(i+1)
- Parent of position i at position (i-1)/2

(int arithmetic truncates)

Heap Operations - heapInsert

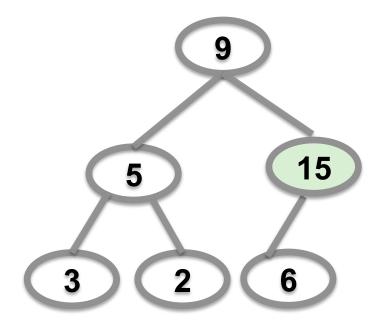


- Step 1: put a new value into first open position (maintaining completeness), i.e. at the end
- but now we potentially violated the heap property!
- Step 2: bubble values up
 - Re-enforcing the heap property
 - Swap with parent until in the right place

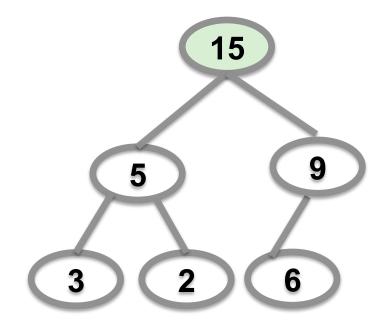


Insert 15

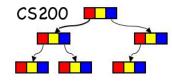
bubble up



bubble up

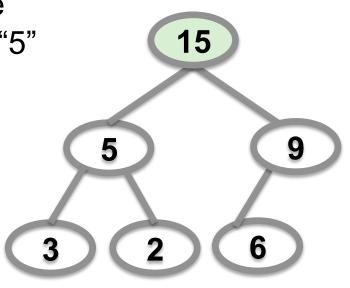


Question:

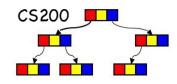


If we now insert "5", then A. It gets discarded as a duplicate B. It is combined with the current "5"

C. It is put to the right of "9"

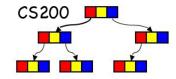


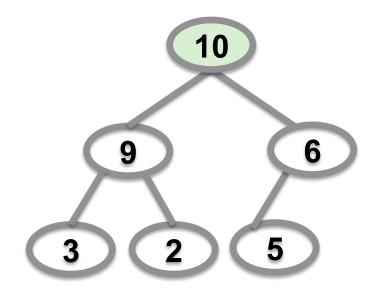
Heap operations - heapDelete



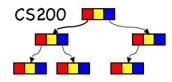
- Step 1: always remove value at root (Why?)
- Step 2: substitute with rightmost leaf of bottom level (Why?)
- Step 3: percolate / bubble down
 - Swap with maximum child as necessary, until in place
 - this is call **HEAPIFY**

Deletion from a heap

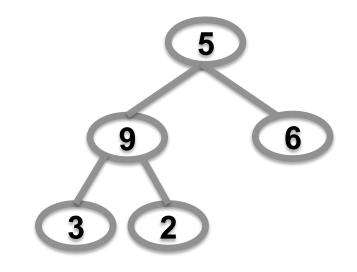


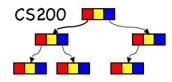


Delete 10 Place last node in root HEAPIFY (bubble down)

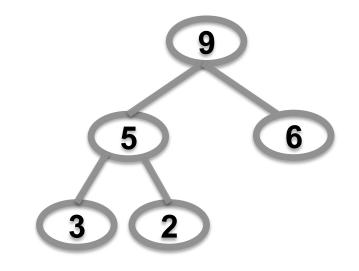


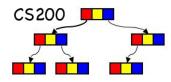
bubble down draw the heap

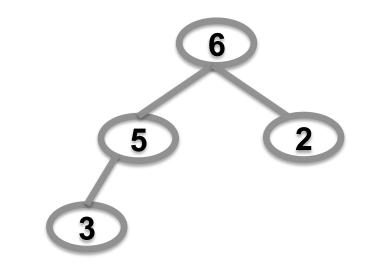


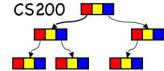


delete again draw the heap







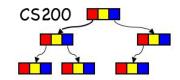


	Average	Worst Case
insert	O(log n)	O(log n)
delete	O(log n)	O(log n)

Heap versus BST for PriorityQueue

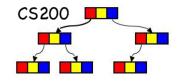
- BST can also be used to implement a priority queue
- How does worst case complexity compare?
- How does average case complexity compare?
- What if you know the maximum needed size for the PriorityQueue?

Small number of priorities



A heap of queues with a queue for each priority value.

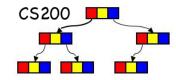
HeapSort



Algorithm

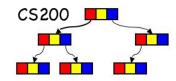
- Insert all elements (one at a time) to a heap
- Iteratively delete them
 - Removes minimum/maximum value at each step
- Computational complexity?

HeapSort



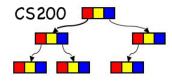
- Alternative method (in-place):
 - buildHeap: create a heap out of the input array:
 - Consider the input array as a complete binary tree
 - Create a heap by iteratively expanding the portion of the tree that is a heap
 - Leaves are already heaps
 - Start at last internal node
 - Go backwards calling heapify with each internal node
 - Iteratively swap the root item with last item in unsorted portion and rebuild

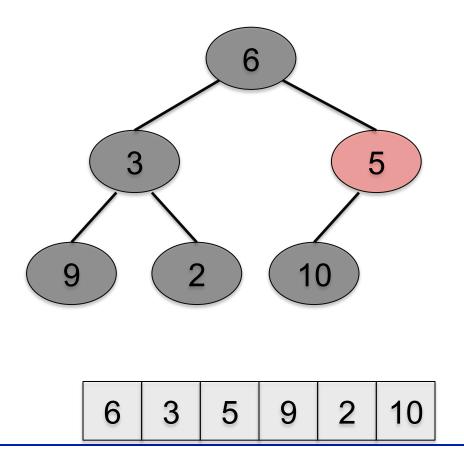
Building the heap

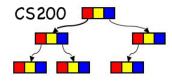


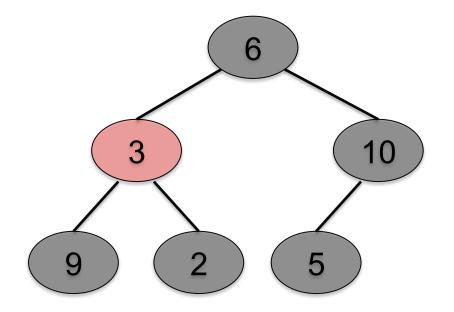
for (i = (n-2)/2 down to 0)
 //Assertion: the tree rooted at index is a semiheap
 //i.e., the sub trees are heaps
 heapify(i); // bubble down
 //Assertion: the tree rooted at index is a heap

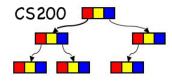
- WHY start at (n-2)/2?
- WHY go backwards?
- The whole method is called buildHeap
- One bubble down is called heapify

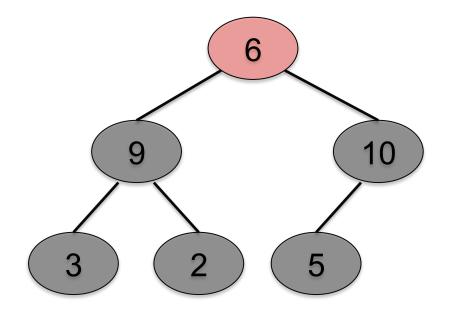


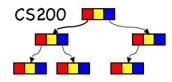


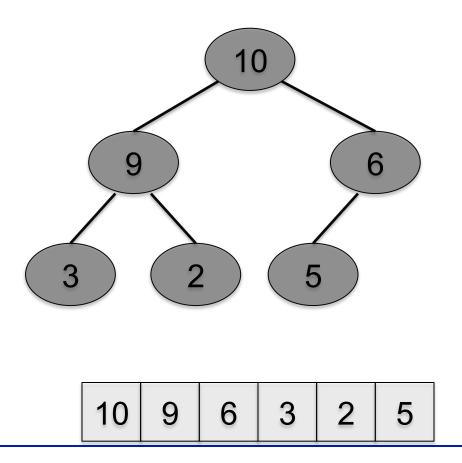




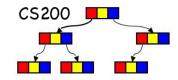




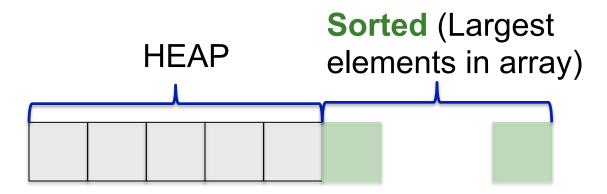




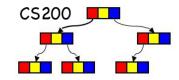
In place heapsort using an array



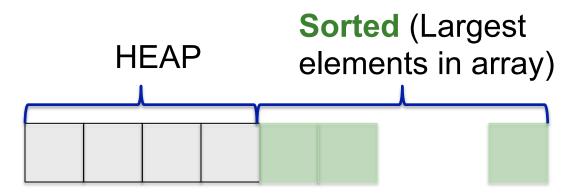
- First build a heap out of an input array
- Then partition the array into two regions; starting out with the full heap and an empty sorted and stepwise growing sorted and shrinking heap.

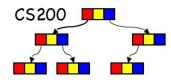


In place heapsort using an array



- First build a heap out of an input array
- Then partition the array into two regions; starting out with the full heap and an empty sorted and stepwise growing sorted and shrinking heap.





SORTED