
 CS200: Hash Tables

Prichard Ch. 13.2

CS200 - Hash Tables 1

Table Implementations:
average cases

Can we build a faster data structure?

Search Add Remove

Sorted
array-based

O(log n) O(n) O(n)

Unsorted
array-based

O(n) O(1) O(n)

Balanced
Search
Trees

O(log n) O(log n) O(log n)

CS200 - Hash Tables 2

Fast Table Access

Suppose we have a magical address calculator…

tableInsert(in: newItem:TableItemType)!
!// magiCalc uses newItem’s search key to!

 // compute an index!
 i = magiCalc(newItem)!
!table[i] = newItem!

CS200 - Hash Tables 3

Hash Functions and Hash Tables

Magical address calculators exist:
They are called hash functions

hash
table

CS200 - Hash Tables 4

Hash Table: nearly-constant-time

n  A hash table is an array in which the index of the
data is determined directly from the key… which
provides near constant time access!

n  location of data determined from the key
q  table implemented using array(list)
q  index computed from key using a hash function or

hash code
n  close to constant time access if nearly unique

mapping from key to index
q  cost: extra space for unused slots

CS200 - Hash Tables 5

Hash Table: examples

q  key is string of 3 letters
n  array of 17576 (263) entries, costly in space
n  hash code: letters are “radix 26” digits
 a/A -> 0, b/B -> 1, .. , z/Z -> 25,
n  Example: Joe -> 9*26*26+14*26+4

q  key is student ID or social security #
n  how many likely entries?

CS200 - Hash Tables 6

Hash Table Issues

n  Underlying data-structure
q  fixed length array, usually of prime length
q  each slot contains data

n  Addressing
q  map key to slot index (hash code)
q  use a function of key

n  e.g., first letter of key
n  What if we add ‘cap’?

q  collision with ‘coat’

bat
coat
dwarf

hoax

law

CS200 - Hash Tables 7

Hash Function Maps Key to Index

n  Desired Characteristics
q  uniform distribution, fast to compute
q  return an integer corresponding to slot index

n  within array size range
q  equivalent objects => equivalent hash codes

n  what is equivalent? Depends on the application, e.g. upper
and lower case letters equivalent

 “Joe” == “joe”

n  Perfect hash function: guarantees that every
search key maps to unique address

n  takes enormous amount of space
n  cannot always be achieved (e.g., unbounded length strings)

CS200 - Hash Tables 8

Hash Function Computation

n  Functions on positive integers

q  Selecting digits (e.g., select a subset of digits)
q  Folding: add together digits or groups of digits, or pre-

multiply with weights, then add
q  Often followed by modulo arithmetic:
 hashCode % table size

CS200 - Hash Tables 9

What could be the hash function
if selecting digits?

n  h(001364825) = 35
n  h(9783667) = 37

n  h(225671) = ?
A.  39
B.  31
C.  61

CS200 - Hash Tables 10

Hash function: Selecting digits

n  h(001364825) = 35
q  Select the fourth and last digits

n  Simple and fast
q  Does not evenly distribute items

11 CS200 - Hash Tables

Hash function: Folding

n  Suppose the search key is a 9-digit ID.

n  Sum-of-digits:
 h(001364825) = 0 + 0 + 1 + 3 + 6 + 4 + 8 + 2 + 5

 satisfies: 0 <= h(key) <= 81

n  Grouping digits: 001 + 364 + 825 = 1190

0 <= h(search key) <=3*999=2997

CS200 - Hash Tables 12

Hash function data distribution
n  Assume key is a String
n  Pick a size; compute key to any integer using

some hash code; index = hashCode(key)%size
n  hashCode e.g.:
 Sum(i=0 to len-1)

 getNumericValue(string.charAt(i))*ci

 a = 1,…, z= 26

q  similar to Java built-in hashCode() method
n  This does not work well for very long strings with

large common subsets (URL) or English words.

CS200 - Hash Tables 13

hashCode on words

n  Letter frequency is NOT UNIFORM in the
English language (actually in no language)

 Highest frequency for “e” : 12% followed by
 “t” : 9% followed by “a” : 8%

n  The polynomial evaluation in hashCode followed

by taking modulo hashSize gives rise to non
uniform hash distribution.

CS200 - Hash Tables 14

hashSize = 1000 vs 1009

15 CS200 - Hash Tables

Collisions

 Collision: two keys
map to the same
index

 Hash function: key%101

 both 4567 and 7597 map to 22

CS200 - Hash Tables 16

The Birthday Problem
n  What is the minimum number of people so that

the probability that at least two of them have the
same birthday is greater than ½?

n  Assumptions:
q  Birthdays are independent
q  Each birthday is equally likely

The Birthday Problem
n  What is the minimum number of people so that

the probability that at least two of them have the
same birthday is greater than ½?

n  Assumptions:
q  Birthdays are independent
q  Each birthday is equally likely

n  pn – the probability that all people have different
birthdays

n  at least two have same birthday:

pn = 1
365
366

364
366

· · · 366� (n� 1)
366

n = 23⇤ 1� pn ⇥ 0.506

The Birthday Problem:
Probabilities
N: # of people P(N): probability that at least two of the N people

have the same birthday.
10 11.7 %
20 41.1 %
23 50.7 %
30 70.6 %
50 97. 0 %
57 99.0%
100 99.99997%
200 99.999999999999999999999999999998%
366 100%

CS200 - Hash Tables 19

Probability of Collision

n  How many items do you need to have in a
hash table so that the probability of collision
is greater than ½?

n  For a table of size 1,000,000 you only need
1178 items for this to happen!

CS200 - Hash Tables 20

Collisions

 Collision: two keys
map to the same
index

 Hash function: key%101

 both 4567 and 7597 map to 22

CS200 - Hash Tables 21

Methods for Handling Collisions

n  Approach 1: Open addressing
q  Probe for an empty slot in the hash table

n  Approach 2: Restructuring the hash table
q  Change the structure of the array table: make

each hash table slot a collection (e.g. ArrayList,
or linked list)

CS200 - Hash Tables 22

Open addressing

n  When colliding with a location in the hash
table that is already occupied
q  Probe for some other empty, open, location in

which to place the item.
q  Probe sequence

n  The sequence of locations that you examine
n  Linear probing uses a constant step, and thus probes
 loc, (loc+step)%size, (loc+2*step)%size, etc.

In the sequel we us step=1 for linear probing examples

CS200 - Hash Tables 23

Linear Probing, step = 1

n  Use first char. as hash function
q  Init: ale, bay, egg, home

n  Where to search for
q  egg
q  ink

ale
bay

egg

home

hash code 8

n  Where to add
n  gift
n  age

6 empty
gift

age

0 full, 1 full, 2 empty

hash code 4

Question: During the process of linear
probing, if there is empty spot,
 A. No item found ? or
B. There is still a chance to find the item ?

Open addressing: Linear Probing

n  Deletion: The empty positions created along
a probe sequence could cause the retrieve
method to stop, incorrectly indicating failure.

n  Resolution: Each position can be in one of
three states occupied, empty, or deleted.
Retrieve then continues probing when
encountering a deleted position. Insert into
empty or deleted positions.

CS200 - Hash Tables 25

Linear Probing (cont.)

n  insert
q  bay
q  age
q  acre

n  remove
q  bay
q  age

n  retrieve
q  acre

ale

egg

home

gift

Question: Where does almond go now?

Open Addressing 1: Linear Probing

ale
bay

egg

home

gift

age
n  Primary Clustering Problem

n  keys starting with ‘a’, ‘b’, ‘c’, ‘d’
n  competing for same open slot (3)

Open Addressing: Quadratic Probing

n  check

h(key) + 12, h(key) +
22, h(key) + 32,… !

n  Eliminates the primary
clustering phenomenon

n  But.. secondary clustering:
two items that hash to the
same location have the
same probe sequence, is
not solved

CS200 - Hash Tables 28

Open Addressing: Double Hashing

Use two hash functions:
n  h1(key) – determines the position
n  h2(key) – determines the step size for probing

q  the secondary hash h2 needs to satisfy:
 h2(key) ≠ 0
 h2 ≠ h1 (bad distribution characteristics)

CS200 - Hash Tables 29

Double Hashing, example
POSITION: h1(key) = key % 11
STEP: h2(key) = 7 – (key % 7)
Insert 58, 14, 91

CS200 - Hash Tables 30

h1(58) = 3, put it there

h1(14) = 3 collision
h2(14) = 7-(14%7) = 7
put it in (3+7)%11 = 10

h1(91) = 3 collision
h2(91) = 7-(91%7) = 7
3+7 = 10 collision
put it in (10+7)%11 = 6

Open Addressing:
Increasing the table size
n  Increasing the size of the table: as the table

fills the likelihood of a collision increases.
q  Cannot simply increase the size of the table –

need to run the hash function again

CS200 - Hash Tables 31

Restructuring the Hash Table:
Hybrid Data Structures
n  elements in hash table become collections

q  elements hashing to same slot grouped together in the
collection

q  collection is a separate structure
n  e.g., ArrayList (bucket) or linked-list (separate chaining)

n  a good hash function keeps a near uniform
distribution, and hence the collections small

n  does not need special case for removal as open
addressing does

Separate Chaining Example

n  Hash function
q  first char

n  Locate
q  egg
q  gift

n  Add
q  bee?

n  Remove
q  bay?

bay

egg elk

gate

The Efficiency of Hashing

n  Consider a hash table with n items
q  Load factor α = n / tableSize
q  n: current number of items in the table
q  tableSize: maximum size of array
q  α : a measure of how full the hash table is.

n  measures difficulty of finding empty slots

n  Efficiency decreases as n increases

CS200 - Hash Tables 34

Size of Table

n  Determining the size of Hash table
q  Estimate the largest possible n
q  Select the size of the table to get the load factor

small.
q  Load factor should not exceed 2/3.

35 CS200 - Hash Tables

Hashing: Length of Probe Sequence

n  Average number of comparisons that a
search requires,
q  Linear Probing

n  successful

n  unsuccessful

q  Quadratic Probing and Double Hashing
n  successful

n  unsuccessful

1
2
1+ 1
1−α

"

#$
%

&'

1
2
1+ 1
(1−α)2

"

#
$

%

&
'

€

−loge 1−α()
α

1
1−α

From D.E. Knuth, Searching and Sorting, Vol. 3 of The Art of Computer Programming

CS200 - Hash Tables 36

Hashing: Length of Probe Sequence
n  Average number of comparisons that a

search requires,
q  Chaining

n  successful: 1 + α/2
n  unsuccessful: α	

q  Note that α can be > 1 for chaining
n  From this we can conclude (see Prichard):

q  Linear probing is worst
q  Quadratic probing and double hashing are better
q  Chaining is best
q  BUT it is all average case!

 CS200 - Hash Tables 37

Traversal of Hash Tables

n  Hash tables good for random access

n  If you need to traverse your tables by the
sorted order of keys – hash tables may not
be the appropriate data structure.

CS200 - Hash Tables 38

Hash Tables in Java

public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>!

public Hashtable(int initialCapacity, float loadFactor)!

!public Hashtable(int initialCapacity) //default loadFactor: 0.75!

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>!

!public HashMap(int initialCapacity, float loadFactor)!

!public HashMap(int initialCapacity) //default loadFactor: 0.75!

CS200 - Hash Tables 39

From the JAVA API: “A map is an object that maps keys to values…
The HashMap class is roughly equivalent to Hashtable, except that it
is unsynchronized and permits nulls.” Both provide methods to create
and maintain a hash table data structure with key lookup.
Load factor (default 75%) specifies when the hash table capacity is
automatically increased.

