
CS 220: Discrete Structures and their
Applications

Recursive algorithms and induction
6.8 in zybooks

Induction and Recursion

Several of the inductive proofs we looked at lead to recursive
algorithms:

■ The triomino tiling problem

■ Making postage using 3 and 5 cent stamps

■ Generating all subsets of a set recursively

Induction is useful for designing and proving the correctness
of recursive algorithms

String reversal

Consider the following recursive algorithm for reversing a
string:

reverse_string(s)
if s is the empty string:

return s
let c be the first character in s
remove c from s
s' = reverse_string(s)
return the string s' with c added to the end

String reversal

Proof of correctness of reverse_string
reverse_string(s)

if s is the empty string:
return s

let c be the first character in s
remove c from s
s' = reverse_string(s)
return the string s' with c added to the end

By induction on the length of the string

Base case: If s has length 0 the algorithm returns s which is its
own reverse.

String reversal

Proof of correctness of reverse_string
reverse_string(s)

if s is the empty string:

return s
let c be the first character in s

remove c from s
s' = reverse_string(s)

return the string s' with c added to the end

Inductive step: assume that reverse_string works correctly for
strings of length k and show that for k+1
Let s be a string of length k + 1. s = c1c2…ckck+1.
reverse_string makes a recursive call whose input is c2…ckck+1.
By the induction hypothesis it returns the inverse: ck+1ck…c2

It then adds c1 at the end, returning ck+1ck…c2c1, which is the reverse
of s

recursive power

def pow(x, n):
#precondition: x and n are positive integers
if (n == 0):

return 1
else :

return x * pow(x, n-1)
}

}

recursive power

def pow(x, n):
#precondition: x and n are positive integers
if (n == 0):

return 1
else :

return x * pow(x, n-1)

Claim: the algorithm correctly computes xn.
Proof: By induction on n
Basis step: n = 0: it correctly returns 1
Inductive step: assume that for n the algorithm correctly

returns xn.
Then for n+1 it returns x xn = xn+1.

Egyptian Exponentiation

In PA2 you are implementing an iterative exponentiation
algorithm, based on the following recursive definition:
def pow(x, n):

#precondition: x and n are positive integers
if n == 0:

return 1
else if not (n/2 == n//2):

return x * pow(x**2, n//2)
else:

return pow(x**2, n//2)

Does linear induction work for this algorithm? Why (not) ?
What do we need?

the power set

def powerset(s) :
if len(s) == 0:

return {frozenset()}
else :

element = s.pop()
pwrset = powerset(s)
return pwrset.union({ x.union({element})

for x in pwrset})

