CS 220: Discrete Structures and their Applications

Permutations and combinations zybooks 7.4-7.6

Motivating question

In a family of 3, how many ways are there to arrange the members of the family in a line for a photograph?

- A) 3×3
- B) 3!
- c) 3 x 3 x 3
- D) 2³

The Traveling Salesman Problem (TSP)

TSP: Given a list of cities and their pairwise distances, find a shortest possible tour that visits each city exactly once.

Objective: find an ordering $a_1,...,a_n$ of the cities that minimizes

$$d(a_1, a_2) + d(a_2, a_3) + \dots + d(a_{n-1}, a_n) + d(a_n, a_1)$$

FRANCE

POL

where d(i, j) is the distance between cities i and j

An optimal TSP tour through Germany's 15 largest cities

Permutations

A permutation of a set of distinct objects is an ordered arrangement of these objects.

■ Example: (1, 3, 4, 2) is a permutation of the numbers 1, 2, 3, 4

How many permutations of n objects are there?

How many permutations?

How many permutations of n objects are there? Using the product rule:

$$n \cdot (n-1) \cdot (n-2), ..., 2 \cdot 1 = n!$$

Anagrams

Anagram: a word, phrase, or name formed by rearranging the letters of another.

Examples:

"cinema" is an anagram of iceman
"Tom Marvolo Riddle" is an anagram of
"I am Lord Voldemort"

The anagram server: http://wordsmith.org/anagram/

How many permutations of {a,b,c,d,e,f,g} end with a?

- A) 5!
- B) 6!
- c) 7!
- b) 6 x 6!

You invite 6 people for a dinner party. How many ways are there to seat them around a round table? (Consider two seatings to be the same if everyone has the same left and right neighbors).

- A) 6!
- B) 5!
- c) 7!

Count the number of ways to arrange n men and n women in a line so that no two men are next to each other and no two women are next to each other.

- a) n!
- b) n! n!
- c) 2 n! n!

The Traveling Salesman Problem (TSP)

TSP: Given a list of cities and their pairwise distances, find a shortest possible tour that visits each city exactly once.

Objective: find an ordering $a_1,...,a_n$ of the cities that minimizes

$$d(a_1, a_2) + d(a_2, a_3) + \dots + d(a_{n-1}, a_n) + d(a_n, a_1)$$

An optimal TSP tour through Germany's 15 largest cities

FRANCE

POL

where d(i, j) is the distance between cities i and j

solving TSP

An algorithm for the TSP problem:

Go through all permutations of cities, and evaluate the sum-of-distances, keeping the optimal tour.

generating permutations

how to generate permutations recursively?

generating permutations

how to generate permutations recursively

generating permutations code

Does this work?

```
def perm(A,f):
     if f == len(A)-1:
       print(A)
     else:
       for i in range(f,len(A)) :
         A[i], A[f] = A[f], A[i]
         perm(A, f+1)
   \mathbf{A} = []
   for i in range(n):
      A.append(i)
   perm(A,0)
Let's try it ...
```

solving TSP

Is our algorithm for TSP that considers all permutations a feasible one for solving TSP problems with hundreds or thousands of cities?

NO: 50 cities:

(n-1)!/2 = 12,413,915,592,536,072,670,862,289,047,373,375,0 38,521,486,354,677,760,000,000,000

We call problems like TSP intractable.

Question: would there be a faster algorithm for printing all permutations?

r-permutations

r-permutation: An ordered arrangement of r elements of a set.

Example: List the 2-permutations of {a,b,c}. (a,b), (a,c), (b,a), (b,c), (c,a), (c,b)

The number of r-permutations of a set of n elements:

$$P(n,r) = n(n-1)...(n-r+1)$$
 $(0 \le r \le n)$

Example: $P(3,2) = 3 \times 2 = 6$

Can be expressed as:

$$P(n, r) = n! / (n - r)!$$

Note that P(n, 0) = 1.

r-permutations - example

How many ways are there to select a first-prize winner, a second prize winner and a third prize winner from 100 people who have entered a contest?

permutations with repetitions

How many ways are there to scramble the letters in the word MISSISSIPPI?

permutations with repetitions

The general statement of the principle:

The number of distinct sequences with n_1 1's, n_2 2's, ..., n_k k's, where $n = n_1 + n_2 + ... + n_k$ is

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

question

How many poker hands (five cards) can be dealt from a deck of 52 cards?

How is this different than r-permutations?

question

How many poker hands (five cards) can be dealt from a deck of 52 cards?

How is this different than r-permutations?

In an r-permutation we cared about order. In this case we don't

combinations

An r-combination of a set is a subset of size r

The number of r-combinations out of a set with n elements is denoted as C(n,r) or $\binom{n}{r}$

■ {1,3,4} is a 3-combination of {1,2,3,4}

■ How many 2-combinations of {a,b,c,d}?

Unordered versus ordered selections

Two ordered selections are the same if

- the elements chosen are the same
- the elements chosen are in the same order.

Ordered selections: r-permutations.

Two unordered selections are the same if

 the elements chosen are the same (regardless of the order in which the elements are chosen)

Unordered selections: r-combinations.

Permutations or combinations?

Determine if the situation represents a permutation or a combination:

- In how many ways can three student-council members be elected from five candidates?
- In how many ways can three student-council members be elected from five candidates to fill the positions of president, vice-president and treasurer
- A DJ will play three songs out of 10 requests.

relationship between P(n,r) and C(n,r)

Constructing an r-permutation from a set of n elements can be thought as a 2-step process:

Step 1: Choose a subset of r elements;

Step 2: Choose an ordering of the r-element subset.

Step 1 can be done in C(n,r) different ways.

Step 2 can be done in r! different ways.

Based on the multiplication rule, $P(n,r) = C(n,r) \cdot r!$

Thus

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}$$

r-combinations

How many r-combinations?

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

Note that C(n, 0) = 1Note that C(n,r) = C(n,n-r)

Example: How many poker hands (five cards) can be dealt from a deck of 52 cards?

$$C(52,5) = 52! / (5!47!)$$

r-combinations

How many r-combinations?

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

Note that C(n, 0) = 1

C(n,r) satisfies:

$$C(n,r) = C(n,n-r)$$

We can see that easily without using the formula

combinations or permutations?

How many bit strings of length n contain exactly r ones?

P(n,r) or C(n,r)?

The faculty in biology and computer science want to develop a program in computational biology. A committee of 4 composed of two biologists and two computer scientists is tasked with doing this. How many such committees can be assembled out of 20 CS faculty and 30 biology faculty?

A coin is flipped 10 times, producing either heads or tails. How many possible outcomes

- are there in total?
- contain exactly two heads?
- contain at least three heads?

How many permutations of the letters ABCDEFGH contain the string ABC?

How many 10 character (digits and lowercase/uppercase letters) passwords are possible if

characters cannot be repeated? a 62^{10} b C(62, 10) c P(62, 10)

b) characters can be repeated?

Enumerating Combinations(5,3)

```
012 123 234
013 124
014 134
023 what is the largest digit
024 we can place in the first
034 position? Can you
generalize that for C(n,k)?
```

How do we do it?

place digits d from lo to hi in position p

then recursively place digits in position p+1

lo: previously placed digit +1

hi: n-k for pos 0, n-k+1 for pos 1, n-k+p for pos p

Now write the code for generating combinations (PA4)