
CS 220: Discrete Structures and their 
Applications 

Measuring algorithm running 
time using big O analysis



measuring algorithm running time

We have two algorithms:  alg1 and alg2 that solve the same 
problem, and you want fast running time.

How do we choose between the algorithms?



Measuring the running time of algorithms

Possible solution:
Implement the two algorithms and compare their running times

Issues with this approach:
■ How are the algorithms coded?  We want to compare the 

algorithms, not the implementations.
■ What computer should we use?  Results may be sensitive to this 

choice.
■ What data should we use?



Measuring the running time of algorithms

Objective:  analyze algorithms independently of specific 
implementations, hardware, or data
Observation: An algorithm’s execution time is related to the 
number of operations it requires
Solution: count the number of steps, i.e. constant time, operations 
the algorithm will perform for an input of given size

Example: copying an array with n elements requires ….  operations.



example: linear search

What is the maximum number of steps linear search takes for an 
array of size n?

def linear_search(array, value):
for i in range(len(array)) :

if array[i] == value :
return i

return -1



example:  binary search
def binary_search(array, value, lo, hi):

# precondition: array is sorted
# postcondition: if value in array[lo...hi] return its position
# else return -1 
if (lo>hi) :

r = -1
else :

mid = (lo+hi)/2
if (array[mid]==value): 

r = mid
elif array[mid]>value :

r = binary_search(array, value, lo, mid-1)   
else : 

r = binary_search(array, value, mid+1, hi) 
return r



time complexity

The time complexity of an algorithm is defined by a function 
f: N → N such that f(n) is the maximum number of atomic 
operations performed by the algorithm on any input of size n. 



growth rates

Algorithm A requires n2 / 2 operations to solve a 
problem of size n
Algorithm B requires 5n+10 operations to solve a 
problem of size n

Which one would you choose?



growth rates

n 1 2 3 4 5 6 7 8
n2 / 2 .5 2 4.5 8 12.5 18 24.5 32
5n+10 15 20 25 30 35 40 45 50

n 50 100 1,000 10,000 100,000
n2 / 2 1250 5,000 500,000 50,000,000 5,000,000,000
5n+10 260 510 5,010 50,010 500,010

When we increase the size of input n, how does the execution 
time grow for these algorithms? 



growth rates

Algorithm A

Algorithm B



growth rates

Algorithm A requires n2 / 2 operations to solve a problem 
of size n
Algorithm B requires 5n+10 operations to solve a 
problem of size n

For large enough problem size algorithm B is more 
efficient
We focus on the growth rate:
■ Algorithm A requires time proportional to n2

■ Algorithm B requires time proportional to n



Order of magnitude analysis

Big O: A function f(n) is O(g(n)) if there are two 
positive constants, c and n0, such that 

f(n) £ c*g(n) "n > n0

c*g(x)

f(x)

n
n0



Order of magnitude analysis

Big O: A function f(n) is O(g(n)) if there are two 
positive constants, c and n0, such that 

f(n) £ c*g(n) "n > n0

Focus is on the shape of the function
■ Ignore the multiplicative constant

Focus is on large x
■ n0 allows us to ignore behavior for small x



Order of magnitude analysis

Big O: A function f(n) is O(g(n)) if there are two 
positive constants, c and n0, such that 

f(n) £ c*g(n) "n > n0

Focus is on the shape of the function
■ Ignore the multiplicative constant

Focus is on large x
■ n0 allows us to ignore behavior for small x

c and n0 are witnesses to the relationship that f(x) is O(g(x))
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Let f and g be functions. We say that
f(x) is Ω (g(x))
if there are positive constants c and n0 s.t, 

f(x) ≥ c g(x)
whenever x > n0
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f (x) is Θ(g(x))
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f(x)c1 g(x)

x

c2 g(x)

Let f and g be functions. We say that  
f(x) is Θ(g(x))
if f(x) is O(g(x)) and 

f(x) is Ω(g(x))



Question

f(n) = n2+3n

Is f(n) O(n2)
why? 



Question

f(n) = n+log n

Is f(n) O(n)  ?
why?



Question

f(n) = n log n + 2n

Is f(n) O(n)  ?
why?



Question

f(n) = n log n + 2n

Is f(n) O(n logn)?
why?



worst/average case analysis

Worst case
■ just how bad can it get: the maximum number of steps
■ our focus in this course

Average case
■ number of steps expected “usually”
■ In this course we will hand wave when it comes to average case

Best case 
■ The smallest number of steps  

Example:  searching for an item in an unsorted array



common running times

Careful, this graph is misleading!  Why? Small values of n.
Make a table for n3 and 2n (n=2,4,8,16,32)



common shapes: constant

O(1)

Examples:
Any integer/double arithmetic/
logic operation
Accessing a variable or an element 
in an array



Questions

Which is an example of constant time operations?
A. An integer/double arithmetic operation
B. Accessing an element in an array
C. Determining if a number is even or odd
D. Sorting an array
E. Finding a value in a sorted array
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Common Shapes: Linear

O(n)

Are all linear functions the same O ?

f(n) = a*n + b

a is the slope
b is the Y intersection
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question

Which are examples of linear time operations?
A. Summing n numbers
B. adding an element in a linked list
C. binary search
D. Accessing A[i] in list A.



Other Shapes: Sublinear
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common shapes: logarithm 

logbn is the number x such that bx = n
23 = 8       log28 = 3
24 = 16   log216 = 4

logbn: (# of digits to represent n in base b) – 1
We usually work with base 2
log2n: number of times you can divide n by 2 until you 
get to 1
log2n algorithms often break a problem in 2 halves 
and then solve 1 half
The logarithm is a very slow-growing function



Logarithms (cont.)

Properties of logarithms

■ log(x y) = log x + log y
■ log(xa) = a log x
■ logan = logbn / logba

notice that logba is a constant so
logan = O(logbn) for any a and b 

logarithm is a very slow-growing function
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Guessing game

I have a number between 0 and 63
How many (Y/N) questions do you need to find it? 
is it >=  32    N
is it >=  16    Y
is it >=  24    N
is it >=  20    N
is it >=  18    Y
is it >=  19    Y

What’s the number?
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Guessing game

I have a number between 0 and 63
How many questions do you need to find it? 
is it >=  32    N           0
is it >=  16    Y            1
is it >=  24    N          0
is it >=  20    N         0
is it >=  18    Y            1
is it >=  19    Y            1

What’s the number?    19   (010011 in binary)
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O(log n)  in algorithms

O(log n) occurs in divide and conquer  algorithms, when the 
problem size gets chopped in half (third, quarter,…) every 
step

(About) how many times do you need to divide
1,000 by 2 to get to 1 ?
1,000,000 ?
1,000,000,000 ?



Question

Which is an example of a log time operation?
A. Determining max value in an unsorted array
B. Pushing an element onto a stack
C. Binary search in a sorted array
D. Sorting an array
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Other Shapes: Superlinear

Polynomial (xa), exponential (ax)
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n times
n times

quadratic

O(n2):
for i in range(n) :

for j in range(n) :
…



question

Give a Big O bound for the following function.
f(n) = (3n2 + 8)(n + 1)

(a) O(n)
(b) O(n3)
(c) O(n2)
(d) O(1)

Is f(n)= O(n4)?
What is the BEST (smallest) big O bound for f(n)?



Big-O for Polynomials

Theorem: Let 

where are real numbers.

Then is

Example:  x2 + 5x is O(x2)

Are all quadratic functions the same O? All cubic?

 

f (x) = anx
n + an-1x

n-1 + ...+ a1x + a0

 

an,an-1...,a1,a0

 

f (x)

 

O(xn)
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combinations of functions

Additive Theorem:

Multiplicative Theorem: 

€ 

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). 
Then ( f1 + f2)(x) is O(max(| g1(x) |,| g2(x) |).

€ 

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). 
Then ( f1 f2)(x) is O(g1(x)g2(x)).



practical analysis

Sequential
■ Big-O bound: steepest growth dominates
■ Example: copying of array, followed by binary 

search 
– n + log(n)   O(?)

Embedded code
■ Big-O bound multiplicative
■ Example: a for loop with n iterations and a body 

taking O(log n)   O(?)



dependent loops

....
for (i = 0; i < n; i++) {

for (j = 0; j < i; j++){
...

}
}
...

i = 0:    inner-loop iters =0

i = 1:    inner-loop iters =1

Total = 0 + 1 + 2 + ... + (n-1)
f(n)  = n*(n-1)/2

O(n2)

i = n-1: inner-loop iters =n-1

.

.

.



Loop Example
44

public int f7(int n){
int s = n;
int c = 0;
while(s>1){

s/=2;
for(int i=0;i<n;i++)

for(int j=0;j<=i;j++)
c++;

}
return c;

}

How many outer
(while) iterations?

How many inner
for i

for j 
iterations?

Big O complexity?



Loop Example
45

public int f7(int n){
int s = n;
int c = 0;
while(s>1){

s/=2;
for(int i=0;i<s;i++)

c++;
}
return c;

}

How many outer
(while) iterations?

How many inner
for i per s?
iterations?

Big O complexity?



recursion
Number of operations depends on :
■ number of calls
■ work done in each call

Examples:
■ factorial: how many recursive calls?
■ binary search?
■ merge sort?
■ Fibonacci?   (hint: draw the call tree)
def h(n):

if n==1: return 1
else: return h(n-1) + h(n-1)

def f(n):
if n<2: return 1
else: return f(n-1) + f(n-2)



Practical Analysis - Recursion

Number of operations depends on :
■ number of calls
■ work done in each call

Examples:
■ factorial: how many recursive calls?
■ binary search?

We will devote more time to analyzing recursive algorithms later 
in the course.
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Example Recursive Code
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public int divCo(int n){
if(n<=1)

return 1;
else

return 1 + divCo(n-1) + divCo(n-1);
}

How many recursive calls?
hint: draw the call tree

How much work per call?
What is the role of “return 1” and return 1+…” ?

Big O complexity?



final comments

ü Order-of-magnitude analysis focuses on large 
problems

ü If the problem size is always small, you can 
probably ignore an algorithm’s efficiency

ü Weigh the trade-offs between an algorithm’s time 
requirements and its memory requirements, 
expense of programming/maintenance…


