
CS 220: Discrete Structures and their 
Applications 

graphs
zybooks chapter 10



directed graphs

A collection of 
vertices and 
directed edges

What can this 
represent?



undirected graphs

What can this 
represent?

A collection of 
vertices and 
edges



Graph definitions

Graph G = (V, E) , V: set of nodes  or vertices, 
E: set of edges (pairs of nodes). 
In an undirected graph, edges are unordered pairs 
(sets) of nodes.  In a directed graph edges are 
ordered pairs of nodes.
Path: sequence of nodes (v0..vn)  s.t. "i: (vi ,vi+1) is an 
edge. Path length: number of edges in the path, or 
sum of weights. Simple path: all nodes distinct. 
Cycle: path with first and last node equal. Acyclic 
graph: graph without cycles.  DAG: directed acyclic 
graph.
Two nodes are adjacent if there is an edge between 
them. In a complete graph all nodes in the graph are 
adjacent. 



more definitions
An undirected graph is connected if for all nodes vi and vj
there is a path from vi to  vj . An undirected graph can be 
partitioned in connected components: maximal connected 
sub-graphs.  
A directed graph can be partitioned in strongly 
connected components: maximal sub-graphs C where for 
every u and v in C there is a path from u to v and there is 
a path from v to u.
G’(V’, E’) is a sub-graph of G(V,E) if   V’ÍV and E’Í E
The sub-graph of G induced by V’ has all the edges 
(u,v) Î E such that u Î V’ and v Î V’.
In a weighted graph the edges have a weight (cost, 
length,..) associated with them.



directed / undirected graphs in applications

Directed or undirected graph?
ü Facebook friend graph
ü The "follow" graph
ü The "like" graph
ü Knowledge graph

https://www.ambiverse.com/knowledge-graphs-
encyclopaedias-for-machines/

https://medium.com/basecs/a-gentle-introduction-to-graph-
theory-77969829ead8



constraint graphs

Consider the problem of classroom scheduling:  given a set of 
classes and their times, assign them to classrooms without 
conflicts.

Example:

Class A: MWF, 3:00PM - 4:00PM
Class B: W, 2:00PM - 4:00PM
Class C: F, 3:30PM - 5:00PM
Class D: MWF, 2:30 - 3:30PM

Which is the constraint graph for this scheduling 
problem?



terminology

Vertices/
Nodes

Edges

Two vertices are 
adjacent if they are 
connected by an edge.

The vertices are the 
endpoints of an edge

An edge is incident on 
two vertices.

Two vertices are 
neighbors if they are 
connected by an edge

The number of 
neighbors of a vertex is 
its degree.

G=(V, E)

v

u

e

Vertices Edges



question

a f e g

dcb

What is the degree of c?
A. 4
B. 5
C. 6



undirected graphs

self loop: an edge that connects a vertex to itself

simple graph: no self loops and no two edges that connect 
the same vertices.

We will focus on simple graphs.

No self loops

No "parallel" edges



the handshake theorem

Theorem: Let G=(V,E) be an undirected graph. Then

deg(v)
v∈V
∑ = 2 | E |



subgraphs

A graph H = (VH, EH) is a subgraph of a graph G = (VG, EG) 
if VH ⊆ VG and EH ⊆ EG. 



complete graphs

A complete graph is a simple graph that has an edge between 
every pair of vertices.

The complete graph with n vertices is denoted by Kn

K4:

Complete Graph



cycles

The cycle Cn, n ≥ 3, consists of n vertices v1, v2, …, vn and n 
edges {v1, v2}, {v2, v3},…, {vn-1, vn}, {vn, v1}.  



the  n-dimensional hypercube

The Hypercube Q3

001

101
100

000

010

011

110 111



regular graphs

A regular is a graph in which all vertices have the same degree.

101
100

000

010
011

110 111



looks can be misleading

Consider the following two graphs:

Are they the same?



adjacency matrix of a graph

A

B C

E

D

mapping of vertex
labels to array 
indices

Label Index
A 0
B 1
C 2
D 3
E 4

0 1 2 3 4
0 0 1 0 1 0
1 0 0 0 0 1
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0

Adjacency matrix: n x n matrix 
with entries that indicate if an 
edge between two vertices is 
present

For an undirected graph, 
what would the adjacency 
matrix look like?



question

0 1 2 3 4
0 0 1 1 0 0
1 1 0 0 1 1
2 1 0 0 0 1
3 0 1 0 1 0
4 0 1 1 0 0

Adjacency Matrix

Is this the adjacency matrix of 
an undirected graph?
A. Yes
B. No



adjacency matrix

1Adjacency matrix for an
undirected graph



question

0 1 2 3 4
0 0 1 1 0 0
1 1 0 0 1 1
2 1 0 0 0 1
3 0 1 0 1 0
4 0 1 1 0 0

Adjacency Matrix

Does this graph have self loops?
A. Yes
B. No



adjacency list for a directed graph

A

B C

E

D

Index Label

0 A

1 B

2 C

3 D

4 E

B    B    

E    

B    D    

A    

B    

C    



adjacency list for an undirected graph

mapping of vertex
labels to list of edges

Index Label

0 A

1 B

2 C

3 D

4 E

B    C    

A

B C

E

D

D    

A    D    E    

A    E    

A    B    

B    C    



which implementation

Adjacency matrix
■ Edges are entries in a square matrix

– size: |V|2

■ values:
– 1/0 to indicate presence/absence of edge in 
(un)directed graph

useful for dense graphs

Adjacency list
■ linked-list of out-going edges per vertex

useful for sparse graphs



which implementation

Which implementation best supports common graph 
operations:
■ Is there an edge between vertex i and vertex j?  
■ Find all vertices adjacent to vertex j
■ What's the big O for each of these operations?

Which best uses space?



walks

A walk from v0 to vl in an undirected 
graph G is a sequence of alternating 
vertices and edges that starts and 
ends with a vertex:
⟨v0,{v0,v1},v1,{v1,v2},v2,...,vl−1,{vl−1,vl},vl⟩

A walk can also be denoted by the 
sequence of vertices:
⟨v0,v1,...,vl⟩.
The sequence of vertices is a walk 
only if {vi-1, vi} ∈ E 
for i = 1, 2,...,l.
The length of a walk is l, the number 
of edges in the walk.

v0

v3

v1

v2

e1

e2

e3



walks, circuits, paths, cycles

A circuit is a walk in which the first 
vertex is the same as the last vertex. 
A sequence of one vertex, denoted 
<a>, is a circuit of length 0. 
A walk is a path if no vertex is 
repeated in the walk. 
A circuit is a cycle if there are no 
other repeated vertices, except the 
first and the last.

Same as in directed graphs.

v0

v3

v1

v2

e1

e2

e3



walks, circuits, paths, cycles

A circuit is a walk in which the first vertex is the same as the last 
vertex. 
A walk is a path if no vertex is repeated in the walk. 
A circuit is a cycle if there are no other repeated vertices, except 
the first and the last.

² What is the length of the longest possible walk in a graph with n 
vertices?

² What is the length of the longest possible path in a graph with n 
vertices?

² What is the length of the longest possible circuit in a graph with 
n vertices?

² What is the length of the longest possible cycle in a graph with 
n vertices?



29
Trees

Def.  An undirected graph is a tree if it is connected 
and does not contain a cycle.
How many edges does a tree have?

Given a set of nodes, build a tree step wise
– every time you add an edge, you must add a new 
node to the growing tree.  WHY?

– how many edges to connect n nodes?



30
Rooted Trees

Rooted tree.  Given a tree T, choose a root node r 
and orient each edge below r; do same for sub-trees.

Models hierarchical structure. By rooting the tree it 
is easy to see that it has n-1 edges.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r



Traversing a Binary Tree

Pre order
■ visit the node
■ go left
■ go right

In order
■ go left
■ visit the node
■ go right

Post order
■ go left
■ go right
■ visit the node

Level order / breadth first
■ for d = 0 to height

– visit nodes at level dA

B

D

G

C

E

H

F

I



Traversal Examples

A

B

D

G

C

E

H

F

I

Pre order

A B D G H C E F I

In order

G D H B A E C F I

Post order

G H D B E I F C A

Level order

A B C D E F G H I

IMPLEMENTATION of these traversals??



Tree traversal Implementation

recursive implementation of preorder

■ The steps:
– visit node
– preorder(left child)
– preorder(right child)

■ What changes need to be made for in-order, post-
order?

How would you implement level order?



Graph Traversal

What makes it different from tree traversals?



Graph Traversal

What makes it different from tree traversals:
■ you can visit the same node more than once
■ you can get in a cycle

What to do about it? 



Graph Traversal

What makes it different from tree traversals:
■ you can visit the same node more than once
■ you can get in a cycle

What to do about it:
■ mark the nodes

-White: unvisited
-Grey: (still being considered) on the frontier: not all 
adjacent nodes have been visited yet

-Black: off the frontier: all adjacent nodes visited (not 
considered anymore) 



BFS: Breadth First Search

Like level traversal in trees,  BFS(G,s) 
explores the edges of G and locates every 
node v reachable from s in a level order using 
a queue.



BFS: Breadth First Search

Like level traversal in trees,  BFS(G,s) 
explores the edges of G and locates every 
node v reachable from s in a level order using 
a queue.
BFS also computes the distance: number of 
edges from s to all these nodes, and the 
shortest path (minimal #edges) from s to v.



BFS: Breadth First Search

Like level traversal in trees,  BFS(G,s) 
explores the edges of G and locates every 
node v reachable from s in a level order using 
a queue.
BFS also computes the distance: number of 
edges from s to all these nodes, and the 
shortest path (minimal #edges) from s to v.
BFS expands a frontier of discovered but not 
yet visited nodes. Nodes are colored white, 
grey or black. They start out undiscovered or 
white. 



40
Breadth First Search

BFS intuition.  Explore outward from s, adding nodes 
one "layer" at a time.

BFS algorithm.
■ L0 = { s }.
■ L1 = all neighbors of L0.
■ L2 = all nodes that do not belong to L0 or L1, and 

that have an edge to a node in L1.
■ Li+1 = all nodes that do not belong to an earlier 

layer, and that have an edge to a node in Li.

For each i, Li consists of all nodes at distance exactly 
i from s.  There is a path from s to t iff t appears in 
some layer.

s L1 L2 L n-1



41
Breadth First Tree

BFS produces a Breadth First (spanning) Tree 
rooted at s: when a node v in Li+1 is discovered as a 
neighbor  of node u in Li we add edge (u,v) to the BF 
tree

Property.  Let T be a BFS tree of G, and let (x, y) be 
an edge of G. Then the level of x and y differ by at 
most 1. WHY?



42
Breadth First Search

L0

L1

L2

L3



BFS(G,s)
#d: distance,  c: color,  p: parent in BFS tree
forall v in V-s {c[v]=white; d[v]=¥,p[v]=nil}
c[s]=grey; d[s]=0; p[s]=nil;
Q=empty;
enque(Q,s);
while (Q != empty)  

u = deque(Q);
forall v in adj(u)

if (c[v]==white)  
c[v]=grey; d[v]=d[u]+1; p[v]=u;        
enque(Q,v)

c[u]=black;
# don’t really need grey here, why?



Complexity BFS

Each node is painted white once, and is enqueued and 
dequeued at most once. 



Complexity BFS

Each node is painted white once, and is enqueued and 
dequeued at most once. 

Why?



Complexity BFS

Each node is painted white once, and is enqueued and 
dequeued at most once. 

Enque and deque take constant time. The adjacency 
list of each node is scanned only once: when it is 
dequeued. 



Complexity BFS

Each node is painted white once, and is enqueued and 
dequeued at most once. 

Enque and deque take constant time. The adjacency 
list of each node is scanned only once, when it is 
dequeued. 
Therefore time complexity for BFS is

O(|V|+|E|)  or O(n+m)



DFS: Depth First Search

Explores edges from the most recently 
discovered node;  backtracks when reaching a 
dead-end. The algorithm below does not use 
white, grey, black, but uses explored (and 
implicitly unexplored). Recursive code:

BUT, how do we find cycles in a graph?

DFS(u):
mark u as Explored and add u to R
for each edge (u,v) :

if v is not marked Explored :
DFS(v)



DFS and cyclic graphs

There are two ways DFS 
can revisit a node:

1. DFS has already fully 
explored the node. What 
color does it have then?
Is there a cycle then?

2. DFS is still exploring 
this node. What color 
does it have in this case?
Is there a cycle then?

49



DFS and cyclic graphs
There are two ways DFS can revisit a node:
1. DFS has already fully explored 
the node. What color does it have 
then? Is there a cycle then?
No, the node is revisited 
from outside.

2. DFS is still exploring this node. 
What color does it have in this 
case? Is there a cycle then?
Yes, the node is revisited on a 
path containing the node itself.

So DFS with the white, grey, black coloring scheme detects a 
cycle when a GREY node is visited.

50



Cycle detection: DFS + coloring
51

When a grey (frontier) node is visited, a cycle is detected. 



Recursive / node coloring  version

DFS(u):
#c: color,  p: parent
c[u]=grey
forall v in Adj(u):

if c[v]==white:
p[v]=u
DFS(v)

c[u]=black

The above implementation of DFS runs in  O(m + n) time if 
the graph is given by its adjacency list representation.
Proof:

Same as in BFS ▪



DFS and cyclic graphs

When DFS visits a node for the first time it is 
white. There are two ways DFS can revisit a 
node:

1. DFS has already fully explored the node. 
What color does it have then? Is there a 
cycle then?

2. DFS is still exploring this node. What color 
does it have in this case? Is there a cycle 
then?

53



54
Connectivity

s-t connectivity problem.  Given two node s and t, is 
there a path between s and t?

s-t shortest path problem.  Given two nodes s and t, 
what is the length of the shortest path between s 
and t? Length: either in terms of number of edges, 
or in terms of sum of weights.



connected components

An undirected graph is called connected if there is a path 
between every pair of vertices. 
A connected component is a maximal set of vertices that is 
connected. 
The word "maximal" means that if any vertex is added to a 
connected component, then the set of vertices will no longer be 
connected.



56
Connected Components

Connected graph.  There is a path between any pair 
of nodes.

Connected component of a node s.  The set of all 
nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 
5, 6, 7, 8 }.



Connected Components

Connected component of a node s.  The set of all 
nodes reachable from s.

Given two nodes s, and t, their connected components 
are either identical or disjoint.  WHY?

57



Connected Components

Connected component of a node s.  The set of all 
nodes reachable from s.
Given two nodes s, and t, their connected components 
are either identical or disjoint.

58

Two cases – either there is a path between the two nodes, or there isn’t.
If there is a path:  take a node u in the connected component of s, and 
construct a path from t to u:  t to s, then s to u, so CCs = CCt
If there is no path:  assume that the intersection contains a node u.  Use 
it to construct a path between s and t:  s to u, then u to t – contradiction.



59
Connected Components

A generic algorithm for finding 
connected components:

Upon termination, R is the connected component 
containing s.
■ BFS:  explore in order of distance from s.
■ DFS:  explores edges from the most recently 

discovered node;  backtracks when reaching a 
dead-end.

s

u v

R

R = {s}  # the connected component of s is initially s.
while there is an edge (u,v) where u is in R and v is not in R:

add v to R



example

How many connected components does this graph have?
A. 0
B. 1
C. 2

a

b

c
e

d f



The facebook graph

u 721 million active accounts
u 68.7 billion friendship edges (median number of 

friends = 99)
u The largest connected component of facebook

users contains 99.9% of the users
u Average distance between any pair of users: 4.7

source:  http://arxiv.org/pdf/1111.4503v1.pdf


