CS253: Software Development with C++

Fall 2022

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Inclusion

To use C++ random numbers, you need to:

    
#include <random>

To use old C random numbers (don’t ), you need to:

    
#include <cstdlib>

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Patron Saint of Randomness

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
1737962885
2484516261
77122745

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
289532883
218220617
320114672
1110491947
1217460870

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1833461605
929074791
1468236060
1967533966
220300564

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1716209787190588233
1377155518
1317716493
1174693110
1452897422
290513636

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
341808284
253073463
1388071581
1204204506
1179243014

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to hack your own distribution—it’s hard. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Shouldn’t the result be close to 50 million?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 1…147,473,646 appears three times, whereas 147,473,647…999,999,999 only appears twice, so 1…147,473,646 is overrepresented. Tricky to get right!

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
5 3 2 6 2 4 2 4 1 1 1 6 4 2 5 6 5 3 2 2 5 2 5 4 3 5 6 2 3 2 4 2 3 2 6 5 1 2 4 1 
1 2 2 3 6 1 6 2 6 2 6 1 4 2 6 6 3 6 2 4 1 1 2 4 6 6 4 1 1 5 6 6 2 1 4 6 1 2 3 5 
3 6 1 4 2 3 1 4 5 6 5 1 4 3 1 5 5 4 3 4 2 6 3 1 4 6 4 5 6 3 2 6 2 1 1 5 5 1 6 3 
2 4 1 1 5 3 5 5 2 5 1 3 6 1 3 6 1 1 4 6 1 1 1 2 5 2 1 6 3 1 1 5 3 1 4 2 5 5 6 5 
4 3 1 6 5 5 3 2 5 6 3 6 5 2 3 1 4 4 5 3 3 6 5 1 4 3 5 5 2 3 2 6 4 3 2 3 1 1 1 1 
1 3 5 5 3 4 4 6 4 5 3 6 3 5 1 1 3 3 2 4 4 1 5 6 2 3 5 3 1 6 2 5 4 6 6 3 5 5 3 3 
6 4 2 5 6 4 5 3 4 3 3 6 4 6 6 5 3 5 5 6 2 2 6 1 3 6 4 4 4 1 3 2 5 3 4 4 3 2 1 6 
4 2 2 3 5 1 3 1 3 2 6 3 2 6 3 1 1 6 1 3 3 2 6 3 6 1 4 4 1 1 6 1 3 3 3 6 3 1 1 6 
4 4 1 6 5 5 4 4 1 1 4 1 6 1 1 4 2 2 2 6 4 4 1 6 2 2 6 6 6 2 6 4 3 3 4 2 6 3 2 2 
1 3 1 3 2 2 5 6 5 5 4 5 2 4 5 6 4 2 3 6 4 5 1 5 2 6 3 3 1 1 1 6 1 5 6 2 4 6 5 5 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
22.798 19.741 18.301 20.678 18.263 18.900 24.420 18.793 20.479 23.370 
22.940 18.659 20.197 19.553 24.772 18.743 20.091 22.064 21.711 23.978 
24.783 23.858 19.373 19.273 23.428 18.562 19.646 23.133 21.465 24.669 
21.754 18.801 24.071 20.075 18.824 19.587 19.852 21.235 20.956 23.840 
22.500 20.100 23.376 19.641 21.392 18.863 21.069 22.641 23.909 22.623 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 42.0885%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
16: 
17: 
18: ###
19: ###########
20: ####################
21: ##########################
22: #####################
23: ###########
24: ###
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: YVCO}wXXy|OwrzJjhZvwxzKaDgs^zum`
Password: Dt|h~iJfSbZrKf_NVWd{wctMb}_zTzjQ
Password: szrnIDsSFqf^jDHPrvvMX}lcunLdhBmB
Password: gRVDA^\`[B\`H[\y{}tpSgJNO_{fOyja
Password: |dEqFovcoiHB|HGPYPmFw|Sor]jX\cfC
Password: RjCZlovEJrwml{ws`NRpPAubtMFcLcDV
Password: oiARi}N{yuGKnIvMBWWHbKKG`|o`ON`f
Password: nMB]Gcit~}E[VheXeGBZMRtVXLJB|tIi

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.