CS253: Software Development with C++

Spring 2023

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Inclusion

To use C++ random numbers, you need to:

    
#include <random>

To use old C random numbers (don’t ), you need to:

    
#include <cstdlib>

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Patron Saint of Randomness

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
2672176592
413119524
2629878844

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
528006589
1070135023
916050295
1975498215
262991230

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1377731695
1213069049
619461530
465213802
98939663

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1716244834790610198
520896016
1433049260
2125075943
689478304
105651178

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1525741784
39934861
1170310963
613632268
1101055382

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to hack your own distribution—it’s hard. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Shouldn’t the result be close to 50 million?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 1…147,473,646 appears three times, whereas 147,473,647…999,999,999 only appears twice, so 1…147,473,646 is overrepresented. Tricky to get right!

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
2 3 6 2 2 4 2 1 1 4 5 5 4 3 6 4 6 1 1 5 5 6 3 1 2 2 5 2 6 4 1 6 6 4 4 1 3 6 4 4 
1 5 1 1 6 4 3 6 3 2 6 1 2 1 4 2 4 3 1 5 5 3 1 2 3 1 1 1 3 3 6 4 5 5 5 5 5 1 6 6 
6 6 5 2 1 1 2 4 5 3 6 4 1 1 2 5 2 1 4 6 4 4 6 4 2 4 1 4 4 5 4 6 4 2 2 2 4 6 6 2 
1 6 3 6 5 5 3 4 5 5 4 3 3 4 4 2 3 1 3 4 5 3 2 1 3 3 2 3 2 3 6 4 2 2 4 1 2 6 5 4 
5 2 3 4 3 3 5 1 4 4 2 4 5 6 1 5 3 2 1 5 5 3 4 3 1 6 2 2 2 4 4 2 3 6 2 1 1 5 5 6 
1 4 1 2 6 2 3 5 4 4 6 3 5 2 1 2 5 1 3 5 6 6 3 2 6 2 5 1 2 3 2 3 2 6 3 5 4 5 6 5 
5 6 5 1 5 3 3 5 2 2 4 6 6 4 3 2 1 1 6 4 1 4 2 6 4 3 1 6 5 2 1 5 4 5 1 4 1 5 5 6 
4 5 6 1 6 2 5 6 4 6 6 4 5 6 6 3 6 1 4 4 2 4 3 6 2 2 6 2 3 6 6 2 2 2 3 5 5 5 3 6 
3 3 5 3 1 3 4 4 2 5 5 3 1 6 4 6 3 6 2 1 3 5 2 5 2 6 5 4 2 5 3 5 6 6 6 5 6 5 6 3 
4 3 3 6 1 6 1 2 4 2 1 4 6 3 1 4 6 4 5 2 2 1 5 6 1 2 6 5 2 2 5 2 3 3 1 6 4 2 3 1 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
24.455 23.931 19.791 22.218 22.428 18.769 19.596 22.935 18.155 22.458 
18.630 20.955 24.109 23.674 21.836 22.961 21.552 23.473 21.299 18.928 
24.693 24.686 22.658 24.349 20.535 19.012 19.814 21.684 19.152 23.332 
22.062 22.694 21.806 21.930 19.112 23.059 24.871 21.152 22.697 21.237 
24.137 18.919 20.865 21.411 20.608 23.143 22.969 18.074 20.768 21.665 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 42.0281%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
16: 
17: 
18: ###
19: ###########
20: ####################
21: #########################
22: ####################
23: ###########
24: ####
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: Bg`usRhAjS\bwna~gQgjpFEzfNM\gh]e
Password: RUOecjAhndbcxgHJsGutYRSMntP]Jbq\
Password: vhpFolSW]xh]PROxhfEgSCxQlPUdgp~F
Password: }HOQ~EkE_DF`Kmgw]ybVGSgQpOYWdzqR
Password: |CuC}r{HoOA[\HZemSy~ZEucEzLdxtKt
Password: dYeNVecvjYy~IRp`r`Qy_yUv_]ebibD~
Password: hOF[WGuE`XGosqVgHo~gL]qbjDkxcY`A
Password: OS|mD`agIzg~soLBVamsYHJIRFvJgHIz

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.