Chapter 15
Debugging

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright©

Debugging with High Level Languages

@ Same goals as low-level debugging
= Examine and set values in memory
= Execute portions of program
= Stop execution when (and where) desired

o Want debugging tools to operate on
high-level language constructs
= Examine and set variables, not memory locations
= Trace and set breakpoints on statements and function
calls, not instructions
= ...but also want access to low-level tools when
needed

CS270 - Fall 2014 - Colorado State University

Copyright ©

Types of Errors

o Syntactic Errors
= Input code is not legal
= Caught by compiler (or other translation mechanism)

@ Semantic Errors
= Legal code, but not what programmer intended
= Not caught by compiler, because syntax is correct
@ Algorithmic Errors
= Problem with the logic of the program
= Program does what programmer intended,
but it doesn't solve the right problem

8270 - Fall 2014 - Colorado State University.

Copyright© . nc

Syntactic Errors

@ Common errors:
= missing semicolon or brace
= mis-spelled type in declaration

@ One mistake can cause an avalanche of errors
= because compiler can't recover and gets confused

main () { P .
: i «—— | missing semicolon
int i

int j;
for (1 = 0; 1 <= 10; i++) {
j=1i*71;

printf("%d x 7 = %d\n", i, Jj);
}

} CS270 - Fall 2014 - Colorado State University




Copyright © nc.

Semantic Errors

@ Common Errors
= Missing braces to group statements together
= Confusing assignment with equality
= Wrong assumptions about precedence/associativity
= Wrong limits on for-loop counter
= Uninitialized variables

missing braces,

main () { so printf not part of if
int i
int j;
for (1 = 0; 1 ¢ 10; i++)
j=4ix*7;

printf("sd x 7 = %d\n", i, j);

©S270 - Fall 2014 - Colorado State University 5

Copyright© . nc

Algorithmic Errors

@ Design is wrong, so program does not solve the
correct problem
@ Difficult to find
= Program does what we intended
= Problem might not show up until after many runs
@ Maybe difficult to fix
= May have to redesign
= May have large impact on program code
o Classic example: Y2K bug
= only allow 2 digits for year, assuming 19__

CS270 - Fall 2014 - Colorado State University 6

Copyright © nc.

Debugging Techniques
o Ad-Hoc

= Insert printf statements to track control flow and
display values
= Add code to explicitly check for values out of
expected range, incorrect branches, etc.
= Advantage:
@ No special debugging tools needed
= Disadvantages:
« Frequent recompile and execute cycles makes this
method time-consuming
» Requires intimate knowledge of code
« Inserted code can be buggy

8270 - Fall 2014 - Colorado State University.

ioii

Fle Run View Control Preferences Help

Copyright© . nc

Source-Level Debugger

25
- 26 for (i=1; id=n; ies)
- 27 result = result + i; ~|

AT/ 00 SAS0E-1D | wavo ot el

1 #include <stdio.h>

3 int Al1Sun(int n);

main window
s

of Cygwin
7 int ing /= Input value =/ .
8 int sun; 7% Value of 1+2+3+...+n */ version of gdb

5 int main()
<

9
10 do ¢
11 printé(“Input a number: “);
12 scanf("%d", &in);

13

4 iF (in> ) ¢

15 sum - ALLSun(in);

16 printf(“The AL1Sum of %d is %d\n", in, sum);

17
18} while (in > 0);
19 3

20
21 int Allsun(int n)
22

23 int f; /% Iteration count »/ s
24 int result; 7% Result to be returned x/

7% This loop calculates sum x/

JProgram stopped atne 14

[a11Sun.c ~] [main ~] [source ]




Copyright © nc.

Source-Level Debugging Techniques
9 Breakpoints

= Stop when a particular statement is reached
= Stop at entry or exit of a function

» Conditional breakpoints:
Stop if a variable is equal to a specific value, etc.

» Watchpoints:
Stop when a variable is set to a specific value
9 Single-Stepping

= Execute one statement at a time

= Step "into" or step "over" function calls
» Step into: next statement is first inside function call
» Step over: execute function without stopping
» Step out: finish executing function, stop on exit

©S270 - Fall 2014 - Colorado State University

Copyright© . nc

Source-Level Debugging Techniques

o Displaying Values
= Show value consistent with declared type of variable
= Dereference pointers (variables that hold addresses)
+ See Chapter 16
= Inspect parts of a data structure
« See Chapters 19

CS270 - Fall 2014 - Colorado State University




