What is Software Engineering and
why does it matter?

Original slides by Chris Wilcox
Colorado State University

Computer Science: Disciplines

2

Computer Graphics
= Computer Networking and Security
Parallel Computing
Database Systems
= Artificial Intelligence
Software Engineering

All kinds of interesting stuff is going on at
Colorado State University!

Slides on Software Engineering

Software Engineering

IEEE Computer Society Definition

«“Software engineering is the application
of a systematic, disciplined, quantifiable

approach to the development, operation,
and maintenance of software, and the
study of these approaches; that is, the

application of engineering to software.”

Slides on Software Engineering

Software Disasters
4
Mariner Bugs Out (1962)
Almost World War III (1983)
Medical Machine Kills (1985)
Wall Street Crash (1987)
AT&T Lines Dead (1990)

Slides on Software Engineering

Software Engineering

(s)

Software Engineering

A\

©
*Doing the right thing
Software that users want and need
Software that benefits society
*Doing the thing right
Following a good software process
Developing your programming skills

Slides on Software Engineering

O

No , but lots of progress
Assembly Programming ==)
High Level Languages (Fortran, C) ===)
Object Oriented Languages (C++, Java)
Card Reader =)
Computer Terminal e===)
Bitmapped Display
Command line ==)
Graphical tools (Eclipse, Visual Studio)

Slides on Software Engineering

Nature of Software

What is ftware?

» Non-physical manifestation of information
Intellectual Property
Architected system of software components
» Executable software
Operating system, applications, web site
* Non-executable software

Problem statement, requirements document,
software design, test plan, source code

» The media by itself is not software

Slides on Software Engineering

= Demand for software isﬁigh and rising, we hear

about the perpetual ‘software crisis’.

= Untrained people can hack something together,

thus software is often of poor quality.

= Software creation is labor intensive, must use

engineering (not manufacturing) skills.

= Software does not wear out, but its requirements

and the environment change.

= Software development cannot be automated, and

it's easy to modify but hard to fix.

Slides on Software Engineering

Quality Issues

. 9
eInformation systems:

Data integrity, security, availability, transaction
performance, usability

eDistributed systems:

System reliability, adaptability to network
partitioning, fault tolerance

*Embedded systems:
Response time, reliability, safety, usability

eCommercial Software (COTS):
Reusability versus generality, cost

Slides on Software Engineering

Stakeholders

10

Users
Those who use the software
Needs: efficiency, reliability, usability, functionality

2. Customers

Those who pay for the software

Needs: low cost, reliability, increased productivity, flexibility
. Software developers

Those who write the software

Needs: high-quality documentation, tools, design
. Development Managers

Those who manage the project

Needs: minimal development time, cost, few defects

=

w

A

The “Problem”

11

= Programs are written by programmers, not users,
how to understand requirements?

= Large gaps exist between the problem and solution,
user and computer.

= Human domain is informal, computer domain is
formal, translation is difficult.

= Key requirements can easily be expressed
informally, formal specification is hard.

= Programs are formal (and must be in order to
compile into machine instructions).

Waterfall Model

12
The classic way of

looking at software gfef:?m‘d 1

development: v

= Series of carefully 1
planned stages v

= Verify and validate 1

output at each stage
= Allows stepping back, in 1
a limited way p—
= Hard to handle changing Deployment 1

requirements -
Maintenance

Implementation

==3

v
&
\

Vi
&
Vi

Phased Release
13

« Introduces the idea of
incremental development
Requirements V|

of software.
= Project is broken into St V]

Spiral Model

14
« Explicitly embraces Release 2
prototyping and an iterative
approach to software
development.
= Start by developing a
small prototype

Release 1

g

Prototype

separate phases. | ‘
= Each phase released to vy . oo = Followed by a series of
customers when ready. P8 ' waterfall processes
= System available earlier than = Review software at end of
each phase
waterfall approach. ’
) . = Repeat until software
. Requirements still must be meets requirements (and
final before development. beyond)!
3ntation
Unified Model The agile manifesto
15 16
Inception| Elaboration Construction Transition = Our highESt pI"iOI'ity is tolsatisfy the customer through
early and continuous delivery of valuable software.
Prelim. |Iter.| [Iter.| Iter. Iter. | Iter. Iter. . .
iterations| #1 |1 #n |#nt+1 #m l#mat] K = Welcome changing requirements to harness change for

Requirements

Analvsis

Design

I
'
i I
|
Implemen-
tation

Test I/\ /\l/\ PN

the customer's competitive advantage.
= Deliver working software frequently, from a couple of
weeks to a couple of months, shorter is better.

= Business people and developers must work together
daily throughout the project.
= Build projects around motivated individuals. Give them
the environment and support they need, and trust them.
= Working software is the primary measure of progress,
simplicity is essential.
http://agilemanifesto.org/principles.html

An

The Mythical Man-Month

17

Brooks’s Law: Adding manpower to a late
software project makes it later.

icktoLOOK INSIDE! TS

Woes of the Craft (Brooks)

18

First one must perform perfectly. If one character,
one pause of the incantation is not strictly in the
proper form, the magic doesn’t work.

Next, other people set one’s objectives, provide
one’s resources, and furnish one’s information.
One rarely controls the circumstances...

The next woe is that designing grand concepts is
fun; finding nitty little bugs is just work.

The last woe is that the product over which one
had labored so long appears to be obsolete upon
(or before) completion.

Joys of the Craft (Brooks)

19

First is the sheer joy of making things...,
especially things of his own design.

Second is the pleasure of making things that are
useful to other people.

Third is the fascination of fashioning complex
puzzle-like objects of interlocking moving parts
and watching them work in subtle cycles...

Fourth is the joy of always learning.

Finally, there is the delight of working in such a
tractable medium (as we shall see later, this has
its own problems).

No Silver Bullet

Essence and Accidents of Software Engineering

20

Brooks says “there is no single development, in
either technology or management technique, which
by itself promises even one order of magnitude
improvement within a decade in productivity, in
reliability, in simplicity.”

Brooks makes a distinction between accidental
complexity and essential complexity, and asserts
that most of what software engineers should be
doing is addressing the latter.

Conclusions

» Software is indispensable to our modern lifestyle.
» Engineering discipline is needed for good software:
Be good at what you do.
= And get ready for change. w o
Transactions on
* Why does it matter? Software Engineering md
. Methodology
- So that you will prosper.

For the benefit of society at large.

