
1

What is Software Engineering and

why does it matter?

Original slides by Chris Wilcox

Colorado State University

Computer Science: Disciplines

§  Computer Graphics
§  Computer Networking and Security
§  Parallel Computing
§  Database Systems
§  Artificial Intelligence
§  Software Engineering

 All kinds of interesting stuff is going on at
Colorado State University!

2

Slides on Software Engineering

Software Engineering

IEEE Computer Society Definition:

� “Software engineering is the application
of a systematic, disciplined, quantifiable
approach to the development, operation,

and maintenance of software, and the
study of these approaches; that is, the
application of engineering to software.”

3

Slides on Software Engineering

Software Disasters

Mariner Bugs Out (1962)

Almost World War III (1983)

Medical Machine Kills (1985)

Wall Street Crash (1987)

AT&T Lines Dead (1990)

4

Slides on Software Engineering

2

Software Engineering

� Doing the right thing
§  Software that users want and need
§  Software that benefits society

� Doing the thing right
§  Following a good software process
§  Developing your programming skills

5

Slides on Software Engineering

Software Engineering

No Silver Bullet, but lots of progress
§  Assembly Programming
§  High Level Languages (Fortran, C)
§  Object Oriented Languages (C++, Java)
§  Card Reader
§  Computer Terminal
§  Bitmapped Display
§  Command line
§  Graphical tools (Eclipse, Visual Studio)

6

Slides on Software Engineering

What is software?

�  Non-physical manifestation of information
§  Intellectual Property
§  Architected system of software components

�  Executable software
§  Operating system, applications, web site

�  Non-executable software
§  Problem statement, requirements document,

software design, test plan, source code
�  The media by itself is not software

7

Slides on Software Engineering

Nature of Software

§  Demand for software is high and rising, we hear
about the perpetual ‘software crisis’.

§  Untrained people can hack something together,
thus software is often of poor quality.

§  Software creation is labor intensive, must use
engineering (not manufacturing) skills.

§  Software does not wear out, but its requirements
and the environment change.

§  Software development cannot be automated, and
it’s easy to modify but hard to fix.

8

Slides on Software Engineering

3

Quality Issues
� Information systems:

§  Data integrity, security, availability, transaction
performance, usability

� Distributed systems:
§  System reliability, adaptability to network

partitioning, fault tolerance
� Embedded systems:

§  Response time, reliability, safety, usability
� Commercial Software (COTS):

§  Reusability versus generality, cost

9

Slides on Software Engineering

Stakeholders
10

1.  Users
§  Those who use the software
§  Needs: efficiency, reliability, usability, functionality

2.  Customers
§  Those who pay for the software
§  Needs: low cost, reliability, increased productivity, flexibility

3.  Software developers
§  Those who write the software
§  Needs: high-quality documentation, tools, design

4.  Development Managers
§  Those who manage the project
§  Needs: minimal development time, cost, few defects

The “Problem”
11

§  Programs are written by programmers, not users,
how to understand requirements?

§  Large gaps exist between the problem and solution,
user and computer.

§  Human domain is informal, computer domain is
formal, translation is difficult.

§  Key requirements can easily be expressed
informally, formal specification is hard.

§  Programs are formal (and must be in order to
compile into machine instructions).

Waterfall Model
12

The classic way of
looking at software
development:
§  Series of carefully

planned stages
§  Verify and validate

output at each stage
§  Allows stepping back, in

a limited way
§  Hard to handle changing

requirements

V
&
V

Requirements
Gathering and

Definition

V
&
V

Specification

V
&
V

Design

V
&
V

Implementation

V
&
V

Maintenance

V
&
V

Integration and
Deployment

4

Phased Release
13

�  Introduces the idea of
incremental development
of software.
§  Project is broken into
separate phases.
§  Each phase released to
customers when ready.
§  System available earlier than
waterfall approach.
§  Requirements still must be
final before development.

V
&
V

Requirements
Gathering and

Definition

V
&
V

Specification

V
&
V

Design

V
&
V

Implementation

V
&
V

Planning

Phase 1

V
&
V

Design

V
&
V

Implementation

Phase 2

etc ...

V
&
V

Integration and
Deployment

V
&
V

Integration and
Deployment

Spiral Model
14

�  Explicitly embraces
prototyping and an iterative
approach to software
development.
§  Start by developing a
small prototype
§  Followed by a series of
waterfall processes
§  Review software at end of
each phase
§  Repeat until software
meets requirements (and
beyond)!

Requirements

Specification

DesignImplementation

Prototype

Release 1

Release 2

Review Analysis of risk

Integration and
deployment

Unified Model
15

Elaboration Inception Construction Transition

Requirements

Analysis

Prelim.
iterations

Iter.
#1

Iter.
#n

Iter.
#n+1

Iter.
#m

Iter.
#m+1

Iter.
#k ….. …..

Design

Implemen-
tation

Test

..

Amount of effort expended
on the requirements phase
during the first Construction
iteration

The agile manifesto
16

§  Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

§  Welcome changing requirements to harness change for
the customer's competitive advantage.

§  Deliver working software frequently, from a couple of
weeks to a couple of months, shorter is better.

§  Business people and developers must work together
daily throughout the project.

§  Build projects around motivated individuals. Give them
the environment and support they need, and trust them.

§  Working software is the primary measure of progress,
simplicity is essential.

http://agilemanifesto.org/principles.html

5

The Mythical Man-Month
17

Brooks’s Law: Adding manpower to a late
software project makes it later.

Woes of the Craft (Brooks)
18

§  First one must perform perfectly. If one character,
one pause of the incantation is not strictly in the
proper form, the magic doesn’t work.

§  Next, other people set one’s objectives, provide
one’s resources, and furnish one’s information.
One rarely controls the circumstances...

§  The next woe is that designing grand concepts is
fun; finding nitty little bugs is just work.

§  The last woe is that the product over which one
had labored so long appears to be obsolete upon
(or before) completion.

Joys of the Craft (Brooks)
19

§  First is the sheer joy of making things…,
especially things of his own design.

§  Second is the pleasure of making things that are
useful to other people.

§  Third is the fascination of fashioning complex
puzzle-like objects of interlocking moving parts
and watching them work in subtle cycles…

§  Fourth is the joy of always learning.
§  Finally, there is the delight of working in such a

tractable medium (as we shall see later, this has
its own problems).

No Silver Bullet
Essence and Accidents of Software Engineering

20

§  Brooks says “there is no single development, in
either technology or management technique, which
by itself promises even one order of magnitude
improvement within a decade in productivity, in
reliability, in simplicity.”

§  Brooks makes a distinction between accidental
complexity and essential complexity, and asserts
that most of what software engineers should be
doing is addressing the latter.

6

Conclusions

�  Software is indispensable to our modern lifestyle.
�  Engineering discipline is needed for good software:

§  Be good at what you do.
§  And get ready for change.

�  Why does it matter?
§  So that you will prosper.
§  For the benefit of society at large.

21

Slides on Software Engineering

