
1

Chapter 3
Digital Logic
Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall Semester 2014

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall Semester 2014

State Machine
! Another type of sequential circuit

n  Combines combinational logic with storage
n  “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall Semester 2014

Combinational vs. Sequential

! Two types of “combination” locks

4 1 8 4

30

15

5

10 20

25

Combinational
Success depends only on
the values, not the order in
which they are set.

Sequential
Success depends on
the sequence of values
(e.g, R-13, L-22, R-3).

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall Semester 2014

State

! The state of a system is a snapshot of
all the relevant elements of the system
at the moment the snapshot is taken.
Examples:
n  The state of a basketball game can be represented by

the scoreboard: number of points, time remaining,
possession, etc.

n  The state of a tic-tac-toe game can be represented by
the placement of X’s and O’s on the board.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall Semester 2014

State of Sequential Lock

Our lock example has four different states,
labelled A-D:

 A: The lock is not open, and no relevant
operations have been performed.

 B: The lock is not open, and the user has
completed the R-13 operation.

 C: The lock is not open, and the user has
completed R-13, followed by L-22.

 D: The lock is open.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall Semester 2014

State Diagram
! Shows states and actions that cause a transition

between states.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall Semester 2014

Finite State Machine
! A system with the following components:
1.  A finite number of states
2.  A finite number of external inputs
3.  A finite number of external outputs
4.  An explicit specification of all state transitions
5.  An explicit specification of what determines each

external output value
! Often described by a state diagram.

n  Inputs trigger state transitions.
n  Outputs are associated with each state (or with each

transition).

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall Semester 2014

The Clock
! Frequently, a clock circuit triggers transition from

one state to the next.

! At the beginning of each clock cycle,
state machine makes a transition,
based on the current state and the external
inputs.
n  Not always required. In lock example, the input itself

triggers a transition.

“1”

“0”

time→ One
Cycle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Fall Semester 2014

Implementing a Finite State Machine
! Combinational logic

n  Determine outputs and next state.

! Storage elements
n  Maintain state representation.

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Clock

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall Semester 2014

Storage: Master-Slave Flipflop
! A pair of gated D-latches,

to isolate next state from current state.

During 1st phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2nd phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Fall Semester 2014

Storage

! Each master-slave flipflop stores one state bit.
! The number of storage elements (flipflops)

needed is determined by the number of states
(and the representation of each state).

! Examples:
n  Sequential lock

! Four states – two bits
n  Basketball scoreboard

! 7 bits for each score, 5 bits for minutes, 6 bits for
seconds,1 bit for possession arrow, 1 bit for half, …

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall Semester 2014

Complete Example

! A blinking traffic sign
n  No lights on
n  1 & 2 on
n  1, 2, 3, & 4 on
n  1, 2, 3, 4, & 5 on
n  (repeat as long as switch

is turned on)

DANGER
MOVE
RIGHT

1

2

3
4

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall Semester 2014

Traffic Sign State Diagram

State bit S1 State bit S0

Switch on
Switch off

Outputs

Transition on each clock cycle.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall Semester 2014

Traffic Sign Truth Tables
Outputs

(depend only on state: S1S0)

S1 S0 Z Y X
0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Lights 1 and 2
Lights 3 and 4

Light 5

Next State: S1’S0’
(depend on state and input)

In S1 S0
S1
’

S0
’

0 X X 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

Switch

Whenever In=0, next state is 00.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall Semester 2014

Traffic Sign Logic

Master-slave
flipflop

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall Semester 2014

From Logic to Data Path

! The data path of a computer is all the logic used
to process information.
n  See the data path of the LC-3 on next slide.

! Combinational Logic
n  Decoders -- convert instructions into control signals
n  Multiplexers -- select inputs and outputs
n  ALU (Arithmetic and Logic Unit) -- operations on data

! Sequential Logic
n  State machine -- coordinate control signals and data

movement
n  Registers and latches -- storage elements

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall Semester 2014

LC-3 Data Path
Combinational

Logic

State Machine

Storage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall Semester 2014

Looking Ahead: C Arrays

! Array name can be used (and passed) as a pointer

 // static allocation for array
 int iArray[2] = {1234, 5678};

 printf(“iArray[0]: %d”, iArray[0]);
 printf(“iArray[1]: %d”, iArray[1]);
 printf(“&iArray[0]: %p”, &iArray[0]);
 printf(“&iArray[1]: %p”, &iArray[1]);
 printf(“iArray: %p”, iArray);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall Semester 2014

Looking Ahead: C Pointers

! Pointers can be used for array access

 // dynamic allocation for array
 int *iArray =
 (int *) malloc(2*sizeof(int));
 iArray[0] = 1234; iArray[1] = 5678;
 printf(“iArray[0]: %d”, iArray[0]);
 printf(“iArray[1]: %d”, iArray[1]);
 printf(“&iArray[0]: %p”, &iArray[0]);
 printf(“&iArray[1]: %p”, &iArray[1]);
 printf(“iArray: %p”, iArray);

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall Semester 2014

Looking Ahead: C Structures

! Structures

 struct Student
 {
 char firstName[80];
 char lastName[80];
 int testScores[2];
 char letterGrade;
 };
 struct Student student;
 struct Student students[10];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall Semester 2014

Looking Ahead: C Structures

! Structures

 typedef struct _Student
 {
 char firstName[80];
 char lastName[80];
 int testScores[2];
 char letterGrade;
 } Student;
 Student student;
 Student students[10];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall Semester 2014

Looking Ahead: C Structures

! Accessing structures

 void func(Student student)
 {
 strcpy(student.firstName, “John”);
 student.letterGrade = ‘A’;

 void func(Student *student)
 {
 strcpy(student->firstName, “John”);
 student->letterGrade = ‘A’;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

! File list and compiler flags

 C_SRCS = main.c example.c
 C_OBJS = main.o example.o
 C_HEADERS = example.h
 EXE = example

 GCC = gcc
 GCC_FLAGS = -g –std=c99 –Wall –c
 LD_FLAGS = -g –std=c99 –Wall

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

! File dependencies

Compile .c source to .o objects
.c.o:
 @echo “Compiling C source files”
 $(GCC) $(GCC_FLAGS) $<
 @echo “”

Make .c files depend on .h files
${C_OBJS}: ${C_HEADERS}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

! Build target (default)

Target is the executable
pa3: $(C_OBJS)
 @echo “Linking object modules”
 $(GCC) $(LD_FLAGS) $(C_OBJS) –o $(EXE)
 @echo “”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

! Miscellaneous targets

Clean up the directory
clean:
 @echo “Cleaning up project directory”
 rm –f *.o *~ $(EXE)

Package up the directory
package:
 @echo “Cleaning up project directory”
 tar cvf r4.tar ../R4

