CS270 Recitation 15
 "Final Exam Review Session"

Goals

To help students study some of the material form early in the semester to prepare for the final exam:

1. Numerical Representation: number conversion and floating-point addition
2. Simple Circuits: transistor circuits, combinational logic, and sequential logic

Due to limitations on time and resource, we will not cover LC-3 architecture or assembly coding, or C programming.

Sample Questions

NUMERICAL REPRESENTATION

1) What is the binary equivalent of the hexadecimal number 0xF0A9?

0b \qquad
2) What is the hexadecimal equivalent of the binary number 0 b 1101011110100001 ?
$0 x$ \qquad
3) What is the decimal equivalent of the binary number 0 b 11001010 ?
4) What is the binary equivalent of the decimal number 292 ?

0b \qquad
5) Translate the decimal values below into 8 -bit 2 's complement binary values and do the arithmetic.
12
0b 15
0b \qquad
$+7$
0b
$+-4$
0b
$=19$
$0 b$
$=11$
0b

HINT: Assume IEEE 754 single-precision format for problems 6-7, which has 1 sign bit, 8 exponent bits, biased by 127, and 23 fractional bits, with an implicit 1.
6) What are the binary values of the fields of the IEEE 754 single-precision format of 3.125 ?

Sign $=$ \qquad
Exponent: \qquad
Mantissa: 1. \qquad
7) What is the decimal number represented by 0b 11000001110100000000000000000000 ?
8) Fill in the values below to add the single-precision floating point numbers $\mathrm{x}=2.25$ and $\mathrm{y}=4.50$.
$x=2.25=0 \times 40100000, y=4.50=0 \times 40900000$, sum $=x+y$
What is the (unbiased) exponent of x , in decimal?
What is the (unbiased) exponent of y , in decimal?
What is the mantissa of x in binary, with the implicit 1 shown?
What is the mantissa of y in binary, with the implicit 1 shown?
What is the mantissa of the sum after normalization?
What is the (unbiased) exponent of the sum, after normalization?
What is the hexadecimal value of the sum?
0x \qquad
What is the decimal value of the sum? \qquad
9) Analyze the transistor circuits shown below and complete the truth table.

A	B	T1 (p-type)	T2 (n-type)	T3 (n-type)	T4 (p-type)	C
$\mathbf{0}$	$\mathbf{0}$	Closed		Open	Closed	1
$\mathbf{0}$	$\mathbf{1}$			Open	Open	
1	0		Open			
1	1	Open	Closed	Closed	Open	$\mathbf{1}$

10) Connect the output of the appropriate AND gates to the OR gates to fulfill the truth table below.

\mathbf{A}	\mathbf{B}	\mathbf{X}	\mathbf{Y}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

11) Fill in the truth table for the D latch circuit show below.

Data (D)	Enable (EN)	Previous State	Output (Q)
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	

