\qquad

CS270 Recitation 2
 "Number Crunching"

This recitation will help you prepare for the Homework Assignment 1.
The teaching assistant will go through examples of these problems, then you will do them.
Answers can be checked on the websites shown at the bottom of the assignment.

Goals

To understand data representation in a computer, including boolean, integer, floating point, and character values, and the associated logical and arithmetic operations.

Question 1 (10 points): What is the minimum number of bits required to represent the 12 months in a year? If you have exactly the minimum number of bits, how many bit patterns are unused?

Minimum number of bits: \qquad
Number of unused bit patterns: \qquad

Question 2 (10 points): What are the binary and hexadecimal representations of the decimal value 101202?

Binary: \qquad
Hexadecimal: 0x \qquad

Question 3 ($\mathbf{1 0}$ points): What is the range of unsigned integers that can be stored using 8 bits? What is the range for signed integers represented in 1's and 2's complement, with the same number of bits?

Range of unsigned integers: \qquad to \qquad
Range of signed integers: \qquad to \qquad (1's complement)

Range of signed integers: \qquad to \qquad (2's complement)

Question 4 (10 points): Show the 2's complement addition of -32 plus +13 , with both numbers in binary using 8 bits. Hint: make sure that the resulting binary number corresponds to the correct answer.
\qquad $(-32)+$ \qquad (13) $=$ \qquad (-19)

Question 5 (10 points): Show the 2's complement subtraction of +12 minus +18 , with both numbers in binary using 8 bits. Hint: make sure that the resulting binary number corresponds to the correct answer.
\qquad (12) - \qquad $(18)=$ \qquad (-6)

Question 6 (10 points): Show the results of the following bitwise operations (using the same number of bits as shown in each problem):

NOT(10101100)
$=$ \qquad
10000010 OR $01110111=$ \qquad
10000111 AND $10111011=$ \qquad
10001000 XOR $01011110=$ \qquad
NOT(11011111 XOR 01100000) = \qquad

Question 7 (10 points): Show the results of the following bitwise operations:
$\sim(0 x 3478 \& 0 x D C B A)=0 x$ \qquad
$\left(0 x F F F 0{ }^{\wedge} 0 x 2244\right) \mid 0 x 3579=0 x$ \qquad

Question 8 (10 points): Find the decimal floating-point numbers from the following values (assuming IEEE 32-bit floating-point representation):
$0 \times 41420000=$ \qquad f
$01000000110100000000000000000000=$ \qquad f

Question 9 (10 points): Find the binary and hexadecimal numbers for the following floating-point values (assuming IEEE 32-bit floating-point representation):
$3.375 \mathrm{f}=0 \mathrm{x}$ \qquad (hexadecimal)
$12.25 \mathrm{f}=$ \qquad (binary)

Question 10 (10 points): Translate the following strings from characters into ASCII hexadecimal values and vice versa:
"State" $=0 x$ \qquad
$0 \times 42696 \mathrm{E} 617279="$ \qquad "

Website for ASCII conversion: www.branah.com/ascii-converter
Website for IEEE floating-point conversion: www.h-schmidt.net/FloatConverter
Website for two's complement math: www.planetcalc.com/747

