CS270 Recitation 7
“LC-3 Programming Introduction”

Goals

1. To learn how to write a basic LC-3 program with functions, conditionals, and a loop.
2. To learn how to use the LC-3 assembler and simulator to debug assembly code.

The Assignment

Make a subdirectory called R7 for the recitation, all files should reside in this subdirectory. Copy the file from the link to
the R7 directory, a listing of the code with some comments removed is shown below.

http://www.cs.colostate.edu/~cs270/CurrentSemester/recitations/R7/R7.asm

.ORIG x3000
BR Main

5 A jump table defined as an array of addresses

Functions .FILL IntAdd ; address of add (option 0)
.FILL IntSub ; address of subtract (option 1)
.FILL IntMul ; address of multiply (option 2)
Main LEA RO,Functions ; get base of jump table
LD R1,0ption ; get option to use, no error checking
ADD RO,RO,R1 ;5 add index of array
LDR RO,R0O,#0 ; get address of function
JSRR RO ; call selected function
HALT

; Parameters and return values for all functions

Option .BLKW 1 5 which function to call

Paraml .BLKW 1 ; space to specify first parameter
Param2 .BLKW 1 ; space to specify second parameter
Result .BLKW 1 ; space to store result

; End reserved section: do not change ANYTHING in reserved section!

IntAdd ;5 Your code goes here
; Solution has ~4 instructions
RET
; __
IntSub ;5 Your code goes here
; Solution has ~6 instructions
RET
; __
IntMul ;5 Your code goes here
; Solution has ~9 instructions
RET

.END

1) Use the LC-3 assembler to transform your assembly code into object code that can run on the LC-3 simulator:
$ ~cs270/1c3tools/Ic3as R7.asm

2) Load the LC-3 simulator and the TA will help you step through an invocation of one of the LC-3 subroutines:
$ ~cs270/1c3tools/lc3sim-tk &

3) Implement the IntAdd subroutine, using the following algorithm:

* Load the Param] parameter into a register

* Load the Param?2 parameter into a register

* Add the registers storing Param1 and Param2 into another register
¢ Store the result into the Result memory location and return

4) Test the IntAdd subroutine in the simulator using Option = 0, Param1 = 0x1234, and Param2 = 0x3456. The answer in
Result should be 0x468A. Try a negative value as well.

5) Implement the IntSub subroutine, which is a clone of IntAdd, however you must negate the second operand before the
addition. Use the 2’s complement to do this, as follows:

* Negate the register storing Param2
¢ Increment Param2 using an immediate add

6) Test the IntSub subroutine in the simulator using Option = 1, Param1 = 0x8765, and Param2 = 0x3456. The answer in
Result should be 0x530F.

7) Implement the IntMul subroutine, using the following algorithm:

* Initialize a register for the result to zero

* Load the Param1 parameter into a register

e Ifzero, go to the exit code

* Load the Param?2 parameter into a register

e Ifzero, go to the exit code

* Inaloop, add the Param1 to the result, and decrement Param2
* Continue in the loop while Param?2 is positive

¢ In the exit code store the Result value and return

7) Test the IntMul subroutine in the simulator, using Option = 2, Param1 = 0x1234, and Param2 = 0x0003. The answer in
Result should be 0x369C. Try a negative value as well.

8) Submit to the drop box in RamCT for Recitation 7 and show your code to the TA.

