
1

Chapter 7
Assembly Language

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Spring Semester 2014

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Spring Semester 2014

Human-Readable Machine Language
! Computers like ones and zeros…

! Humans like symbols…

! Assembler is a program that turns symbols into
machine instructions.
n  ISA-specific: close correspondence between symbols

and instruction set
! mnemonics for opcodes
! labels for memory locations

n  additional operations for allocating storage and
initializing data

ADD R6,R2,R6 ; increment index reg.

0001110010000110

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Spring Semester 2014

An Assembly Language Program
;
; Program to multiply a number by six
;
 .ORIG x3050
 LD R1, SIX ; R1 has constant
 LD R2, NUMBER ; R2 has variable
 AND R3, R3, #0 ; R3 has product

;
; The inner loop
;
AGAIN ADD R3, R3, R2 ; R3 += R2
 ADD R1, R1, #-1 ; R1 is loop counter
 BRp AGAIN ; conditional branch

;
 HALT

;
NUMBER .BLKW 1 ; variable
SIX .FILL x0006 ; constant
;
 .END

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Spring Semester 2014

LC-3 Assembly Language Syntax

! Each line of a program is one of the following:
n  an instruction
n  an assember directive (or pseudo-op)
n  a comment

! Whitespace and case are ignored.
! Comments (beginning with “;”) are also ignored.
! An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Spring Semester 2014

Opcodes and Operands
! Opcodes

n  reserved symbols that correspond to LC-3 instructions
n  listed in Appendix A

! example: ADD, AND, LD, LDR, …
! Operands

n  registers -- specified by Rn, n is the register number
n  numbers -- indicated by # (decimal) or x (hex)
n  label -- symbolic name of memory location
n  separated by comma
n  number, order, and type correspond to instruction format

! example:
 ADD R1,R1,R3
 ADD R1,R1,#3
 LD R6,NUMBER
 BRz LOOP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Spring Semester 2014

Labels and Comments
! Label

n  placed at the beginning of the line
n  assigns symbolic name to the address of line

! example: LOOP ADD R1,R1,#-1
 BRp LOOP

! Comment
n  anything after a semicolon is a comment
n  ignored by assembler
n  used by humans to document/understand programs
n  tips for useful comments:

! avoid restating the obvious, as “decrement R1”
! provide insight, as in “accumulate product in R6”
! use comments to separate pieces of program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Spring Semester 2014

Assembler Directives
! Pseudo-operations

n  do not refer to operations executed by program
n  used by assembler
n  look like instruction, but “opcode” starts with dot

Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
.BLKW n allocate n words of storage
.FILL n allocate one word, initialize with

value n
.STRINGZ n-character

string
allocate n+1 locations, initialize

w/chars and null terminator

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Spring Semester 2014

Trap Codes
! LC-3 assembler provides “pseudo-instructions” for each

trap code, so you don’t have to remember them.

Code Equivalent Description
HALT TRAP x25 Halt execution and print to console.
IN TRAP x23 Print prompt on console, read character (in

R0[7:0]) from keyboard.
OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.
Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.
Address of string is in R0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Spring Semester 2014

Style Guidelines
! Use the following style guidelines to improve

readability and understandability of your programs:
1.  Provide a program header, with author’s name, date, etc.,

and purpose of program.
2.  Start labels, opcode, operands, and comments in same

column for each line. (Unless entire line is a comment.)
3.  Use comments to explain what each register does.
4.  Give explanatory comment for most instructions.
5.  Use meaningful symbolic names.

•  Mixed upper and lower case for readability.
•  ASCIItoBinary, InputRoutine, SaveR1

6.  Provide comments between program sections.
7.  Each line must fit on the page -- no wraparound or

truncations.
•  Long statements split in aesthetically pleasing manner.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Spring Semester 2014

Sample Program
! Count the occurrences of a character in a file.

Remember this?

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char
from keybd

(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Spring Semester 2014

Char Count in Assembly Language
(1 of 3)

;
; Program to count occurrences of a char in a file.
; Character to be input from the keyboard.
; Result to be displayed on the monitor.
; Program only works if <= 9 occurrences are found.
;
; Initialization
;
 .ORIG x3000
 AND R2, R2, #0 ; R2 is counter
 LD R3, PTR ; R3 is pointer to chars
 GETC ; R0 gets character input
 LDR R1, R3, #0 ; R1 gets first character
;
; Test character for end of file
;
TEST ADD R4, R1, #-4 ; Test for EOT
 BRz OUTPUT ; If done, prepare output

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Spring Semester 2014

Char Count in Assembly Language
(2 of 3) ;

; Test character for match, if so increment count.
;
 NOT R1, R1
 ADD R1, R1, R0 ; If match, R1 = xFFFF
 NOT R1, R1 ; If match, R1 = x0000
 BRnp GETCHAR ; No match, no increment
 ADD R2, R2, #1
;
; Get next character from file.
;
GETCHAR ADD R3, R3, #1 ; Point to next character.
 LDR R1, R3, #0 ; R1 gets next char to test
 BRnzp TEST
;
; Output the count.
;
OUTPUT LD R0, ASCII ; Load the ASCII template
 ADD R0, R0, R2 ; Covert binary to ASCII
 OUT ; ASCII code is displayed.
 HALT ; Halt machine

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Spring Semester 2014

Char Count in Assembly Language
(3 of 3)

;
; Storage for pointer and ASCII template
ASCII .FILL x0030
PTR .FILL x4000
 .END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Spring Semester 2014

! Convert assembly language file (.asm)
into an executable file (.obj) for the LC-3 simulator.

! First Pass:
n  scan program file
n  find all labels and calculate the corresponding addresses;

this is called the symbol table
! Second Pass:

n  convert instructions to machine language,
using information from symbol table

Assembly Process

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Spring Semester 2014

First Pass: Constructing the Symbol
Table

1.  Find the .ORIG statement, which tells us the
address of the first instruction.

•  Initialize location counter (LC), which keeps track of
the current instruction.

2.  For each non-empty line in the program:
a)  If line contains a label, add label and LC to symbol

table.
b)  Increment LC.

– NOTE: If statement is .BLKW or .STRINGZ,
increment LC by the number of words allocated.

3.  Stop when .END statement is reached.
n  NOTE: A line that contains only a comment is considered an empty

line.

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Spring Semester 2014

Practice

! Construct the symbol table for the program in
Figure 7.1 (Slides 7-11 through 7-13).

Symbol Address

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Spring Semester 2014

Second Pass: Generating Machine
Language

! For each executable assembly language statement,
generate the machine language instruction.
n  If operand is a label, look up the address from the symbol

table.
! Potential problems:

n  Improper number or type of arguments
! ex: NOT R1,#7

 ADD R1,R2
 ADD R3,R3,NUMBER

n  Immediate argument too large
! ex: ADD R1,R2,#1023

n  Address (associated with label) more than 256 from
instruction
! can’t use PC-relative addressing mode

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Spring Semester 2014

Practice

! Using the symbol table constructed earlier,
translate these statements into LC-3 machine
language.

Statement Machine Language
LD R3,PTR

ADD R4,R1,#-4

LDR R1,R3,#0

BRnp GETCHAR

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Spring Semester 2014

LC-3 Assembler
! Using “assemble” (Unix) or LC3Edit (Windows),

generates several different output files.
This one gets
loaded into the
simulator.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Spring Semester 2014

Object File Format
! LC-3 object file contains

n  Starting address (location where program must be
loaded), followed by…

n  Machine instructions

! Example
n  Beginning of “count character” object file looks like:

0011000000000000
0101010010100000
0010011000010001
1111000000100011

.

.

.ORIG x3000

AND R2, R2, #0

LD R3, PTR

TRAP x23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Spring Semester 2014

Multiple Object Files
! An object file is not necessarily a complete

program.
n  system-provided library routines
n  code blocks written by multiple developers

! For LC-3 simulator, can load multiple object files
into memory, then start at a desired address.
n  system routines, such as keyboard input, are loaded

automatically
! loaded into “system memory,” below x3000
! user code loaded between x3000 and xFDFF

n  each object file includes a starting address
n  be careful not to load overlapping object files

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Spring Semester 2014

Linking and Loading
! Loading is the process of copying an executable

image into memory.
n  more sophisticated loaders are able to relocate images

to fit into available memory
n  must readjust branch targets, load/store addresses

! Linking is the process of resolving symbols
between independent object files.
n  suppose we define a symbol in one module,

and want to use it in another
n  some notation, such as .EXTERNAL, is used to tell

assembler that a symbol is defined in another module
n  linker searches symbol tables of other modules to

resolve symbols and generate all code before loading

