
Chapter 19
Data Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Spring Semester 2014

Data Structures

! A data structure is a particular organization
of data in memory.
n  We want to group related items together.
n  We want to organize these data bundles in a way that

is convenient to program and efficient to execute.

! An array is one kind of data structure.
In this chapter, we look at two more:
n  struct – directly supported by C
n  linked list – built from struct and dynamic

allocation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Spring Semester 2014

Structures in C
! A struct is a mechanism for grouping together

related data items of different types.
n  Recall that an array groups items of a single type.

n  Example: We want to represent an airborne aircraft:

 char flightNum[7];
 int altitude;
 int longitude;
 int latitude;
 int heading;
 double airSpeed;

n  We can use a struct to group data fields for each
plane in a single named entity.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Spring Semester 2014

Defining a Struct
! We first need to define a new type for the compiler

and tell it what our struct looks like.

struct flightType {
char flightNum[7]; /* max 6 characters */
int altitude; /* in meters */
int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */

};

n  This tells the compiler how big our struct is and
how the different data items (“members”) are laid out in memory.

n  But it does not allocate any memory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Spring Semester 2014

Declaring and Using a Struct
! To allocate memory for a struct,

we declare a variable using our new data type.

 struct flightType plane;

! Memory is allocated,and we
can access individual members
of this variable:

 plane.airSpeed = 800.0;
 plane.altitude = 10000;

! A struct’s members are laid
out in the order specified by
the definition.

plane.flightNum[0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Spring Semester 2014

Defining and Declaring at Once
! You can both define and declare a struct at the same time.

 struct flightType
 {
 char flightNum[7]; /* max 6 characters */
 int altitude; /* in meters */
 int longitude; /* in tenths of degrees */
 int latitude; /* in tenths of degrees */
 int heading; /* in tenths of degrees */
 double airSpeed; /* in km/hr */
 } maverick;

! And you can use flightType to declare other structs.
 struct flightType iceMan;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Spring Semester 2014

typedef
! C provides a way to define a data type by giving a new

name to a predefined type.
 Syntax:
 typedef <type> <name>;
 Examples:
 typedef int Color;
 typedef struct flightType WeatherData;
 typedef struct ab_type {
 int a;
 double b;
 } ABGroup;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Spring Semester 2014

Using typedef

! This gives us a way to make code more readable
by giving application-specific names to types.

 Color pixels[500];
 Flight plane1, plane2;

Typical practice
 Put typedef’s into a header file, and use type names in main

program. If the definition of Color/Flight changes, you might not
need to change the code in your main program file.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Spring Semester 2014

Generating Code for Structs
! Suppose our program starts out like this:
 int x;
 Flight plane;
 int y;

 plane.altitude = 0;
 ...

n  LC-3 code for this assignment:

 AND R1, R1, #0
 ADD R0, R5, #-13 ; R0=plane
 STR R1, R0, #7 ; 8th word

y
plane.flightNum[0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

x

R5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Spring Semester 2014

Array of Structs

! Can declare an array of structs:

 Flight planes[100];

n  Each array element is a struct (7 words, in this case).
n  To access member of a particular element:

 planes[34].altitude = 10000;

! Because [] and . operators have the same precedence,
and both associate left-to-right, this is the same as:

 (planes[34]).altitude = 10000;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Spring Semester 2014

Pointer to Struct
! We can declare and create a pointer to a struct:
 Flight *planePtr;
 planePtr = &planes[34];

n  To access a member of the struct addressed by
pointer:

 (*planePtr).altitude = 10000;
n  Because the . operator has higher precedence than *,

this is NOT the same as:

 *planePtr.altitude = 10000;

! C provides special syntax for accessing a struct member
through a pointer:

 planePtr->altitude = 10000;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Spring Semester 2014

Passing Structs as Arguments
! Unlike an array, a struct is always passed by value

into a function.
n  This means the struct members are copied to

the function’s activation record, and changes inside the
function are not reflected in the calling routine’s copy.

! Most of the time, you’ll want to pass a pointer to a struct.
 int Collide(Flight *planeA, Flight *planeB)

{
 if (planeA->altitude == planeB->altitude) {
 ...
 }
 else
 return 0;
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Spring Semester 2014

Dynamic Allocation

! Suppose we want our weather program to handle
a variable number of planes – as many as the user
wants to enter.
n  We can’t allocate an array, because we don’t know

the maximum number of planes that might be
required.

n  Even if we do know the maximum number, it might be
wasteful to allocate that much memory because most
of the time only a few planes’ worth of data is
needed.

 Solution:
Allocate storage for data dynamically, as needed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Spring Semester 2014

malloc

! The Standard C Library provides a function for
allocating memory at run-time: malloc.

 void *malloc(int numBytes);

! It returns a generic pointer (void*) to a contiguous
region of memory of the requested size (in bytes).

! The bytes are allocated from a region in memory
called the heap.
n  The run-time system keeps track of chunks of

memory from the heap that have been allocated.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Spring Semester 2014

Using malloc

! To use malloc, we need to know how many bytes
to allocate. The sizeof operator asks the compiler to
calculate the size of a particular type.

 planes = malloc(n * sizeof(Flight));

! We also need to change the type of the return value
to the proper kind of pointer – this is called “casting.”

 planes =
 (Flight*) malloc(n* sizeof(Flight));

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Spring Semester 2014

Example
 int airbornePlanes;

Flight *planes;

printf(“How many planes are in the air?”);
scanf(“%d”, &airbornePlanes);

planes =
 (Flight*) malloc(sizeof(Flight)*airbornePlanes);
if (planes == NULL) {
 printf(“Error in allocating the data array.\n”);
 ...
}
planes[0].altitude = ...

If allocation fails,
malloc returns NULL.

Note: Can use array notation
or pointer notation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Spring Semester 2014

free

! Once the data is no longer needed,
it should be released back into the heap for later use.
n  This is done using the free function, passing it the

same address that was returned by malloc.

 void free(void*);

n  If allocated data is not freed, the program might run
out of heap memory and be unable to continue.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Spring Semester 2014

The Linked List Data Structure

! A linked list is an ordered collection of nodes,
each of which contains some data,
connected using pointers.
n  Each node points to the next node in the list.
n  The first node in the list is called the head.
n  The last node in the list is called the tail.

Node 0 Node 1 Node 2

NULL

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Spring Semester 2014

Linked List vs. Array

! A linked list can only be accessed sequentially.
! To find the 5th element, for instance,

you must start from the head and follow the links
through four other nodes.

! Advantages of linked list:
n  Dynamic size
n  Easy to add additional nodes as needed
n  Easy to add or remove nodes from the middle of the

list (just add or redirect links)
! Advantage of array:

n  Can easily and quickly access arbitrary elements

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Spring Semester 2014

Example: Car Lot

! Create an inventory database for a used car lot.
Support the following actions:
n  Search the database for a particular vehicle.
n  Add a new car to the database.
n  Delete a car from the database.

! The database must remain sorted by vehicle ID.
! Since we don’t know how many cars might be on the lot

at one time, we choose a linked list representation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Spring Semester 2014

Car data structure
! Each car has the following characterics:

vehicle ID, make, model, year, mileage, cost.

! Because it’s a linked list, we also need a pointer to
the next node in the list:

 typedef struct carType Car;

struct carType {
 int vehicleID;
 char make[20];
 char model[20];
 int year;
 int mileage;
 double cost;
 Car *next; /* ptr to next car in list */
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Spring Semester 2014

Scanning the List
! Searching, adding, and deleting all require us to

find a particular node in the list. We scan the list until
we find a node whose ID is >= the one we’re looking for.

Car *ScanList(Car *head, int searchID)
{
 Car *previous, *current;
 previous = head;
 current = head->next;
 /* Traverse until ID >= searchID */
 while ((current!=NULL)
 && (current->vehicleID < searchID)) {
 previous = current;
 current = current->next;
 }
 return previous;
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Spring Semester 2014

Adding a Node

! Create a new node with the proper info.
Find the node (if any) with a greater vehicleID.
“Splice” the new node into the list:

Node 0 Node 1 Node 2

NULL

new node

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Spring Semester 2014

Excerpts from Code to Add a Node

 newNode = (Car*) malloc(sizeof(Car));
/* initialize node with new car info */
...
prevNode = ScanList(head, newNode->vehicleID);
nextNode = prevNode->next;

if ((nextNode == NULL)
 || (nextNode->vehicleID != newNode->vehicleID))
 prevNode->next = newNode;
 newNode->next = nextNode;
}
else {
 printf(“Car already exists in database.”);
 free(newNode);
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Spring Semester 2014

Deleting a Node

! Find the node that points to the desired node.
Redirect that node’s pointer to the next node (or NULL).
Free the deleted node’s memory.

Node 0 Node 1 Node 2

NULL

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Spring Semester 2014

Excerpts from Code to Delete a Node

 printf(“Enter vehicle ID of car to delete:\n”);
scanf(“%d”, vehicleID);

prevNode = ScanList(head, vehicleID);
delNode = prevNode->next;

if ((delNode != NULL)
 && (delNode->vehicleID == vehicleID))
 prevNode->next = delNode->next;
 free(delNode);
}
else {
 printf(“Vehicle not found in database.\n”);
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Spring Semester 2014

Building on Linked Lists

! The linked list is a fundamental data structure.
n  Dynamic
n  Easy to add and delete nodes

! The concepts described here will be helpful
when learning about more elaborate data structures:
n  Trees
n  Hash Tables
n  Directed Acyclic Graphs
n  ...

