
C versus C++
(Procedural Programming
versus Object Oriented)

Original slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Spring Semester 2014

C Versus C++
! Question: Aren’t they really almost the same language?

Isn’t C++ just a superset of C? Answer: No, C++ is very
different and immensely more powerful than C.

! Question: Can I take my C programs and turn then into C
++ by adding objects around everything? Answer: Yes,
but there’s lots more to C++ than just object-oriented C.

! Question: Can I ignore C++ and move on to Java? Isn’t
that what everyone programs in now? Answer: Maybe, it
depends on where you work and what you do.

! Question: Does the instructor of this course think that C++
is an amazing language. Answer: Of course, however I
am aware that C++ has its own set of arcane problems.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Spring Semester 2014

C Language
! What does the C language provide? Variables, constants,

simple data types, compound data types, operators, control
flow, pointers, functions.

! What is the structure of a C program? Really just an entry
point, functions, and global data. Any function can call all
other functions, anytime. Same is true for data access.

! What does the C language not provide? Objects, interfaces,
encapsulation, inheritance, and standard mechanisms for
threading, mutexes, semaphores, sockets, and timers. Also
no containers and algorithms.

! Four ‘C’ dilemmas: 1) how to organize procedural code, 2)
how to make programs portable, and 3) how to avoid writing
defects, including pointer and memory management bugs!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Spring Semester 2014

Spaghetti Code

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Spring Semester 2014

Layered Architecture

msdn.microsoft.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Spring Semester 2014

Procedural Programming
! Much effort has been spent trying to develop solutions that

allow organization of procedural programs:
n  Define interfaces using application programming

interfaces (APIs) to divide architectural layers.
n  Organize functions to maximize cohesion and minimize

coupling between modules.
n  Create header files with related functions, essentially

the equivalent of an object-oriented interface.
n  Avoid the use of global variables, group related data

items into structures which can carefully managed.
! Does this solve the problem? Only if a disciplined

approach is maintained, but this is rarely the case (in my
experience).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Spring Semester 2014

Object Oriented Languages
! Group data and code into a single entity called an object,

allowing encapsulation of complex internals.
! Key concept: separation of interface from implementation,

allows an abstraction of functionality.
! Architects draw a block diagram of the entire system and

identify and design interfaces.
! Public, protected, and private classification apply to data

or methods within the object.
! Common practice: never allow external access to data

objects, supply get and set methods instead.
! OO languages facilitate achieving low coupling which is

enforced by the language itself.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Spring Semester 2014

Object Declaration
class Clookup {
public:
 void construct(vector<sTable> vTables, U32 uLutSize);
 void generate(string sPreamble);
 void replace(string sReplace);
private:
 void analyze(Eanalysis eAnalysis, U32 uLut);
 vector<sTable> m_vTables;
 vector<sVariable> m_vVariables;
 U32 m_uLutSize;
};

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Spring Semester 2014

Other C++ Features
! C++ standard template library (STL): completely new

containers and associated algorithms:
n  vector, list, deque, set, multiset, hash containers
n  find, count, sort, search, merge, count, bound

! C++ strings: a complete revision to the C character array
and string functions, much more like Java
n  string

! C++ iostream library, a complete revision of the C
functions for input/output, but native to C++
n  ios, istream, iostream, fstream, sstream

! C++ memory management: a complete revision to the C
malloc and free interface
n  new, delete

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Spring Semester 2014

C++ Missing Features
As compared to Java:
! Standard syntax for sockets
! Standard syntax for threading
! Standard syntax for synchronization (mutex, semaphore)
! Standard syntax for timing

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Spring Semester 2014

C++ Strings Example
 #include <string>
 string s1 = “This is ”;
 string s2 = “a string”;
 string s3 = s1 + s2; // string concatenation
 if (s1 == s2) // string comparison
 int len = s3.length(); // string length
 string s4 = s3.substr(0,5); // extract substring
 int i = s3.find(“is”, 0); // find substring
 s3.erase(3, 7); // erase substring
 char *oldstr = s3.c_str(); // C string

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Spring Semester 2014

C++ Vector Example
#include <vector>
vector<int> vIntegers;
vector<float> vFloats;
vector<string> vStrings;
vIntegers.clear(); // clear the vector
vIntegers.push_back(1234); // add an entry
vIntegers.push_back(3456); // add an entry
vIntegers.size(); // return the size
vIntegers[0]; or vIntegers.at(0); // access element
vIntegers.insert(0, 2345); // insert element

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Spring Semester 2014

C++ Streams Example
#include <fstream>
void Cfile::Read(string &infile, vector<Cartesian> *vPoints) {
 ifstream inputFile(infile.c_str());
 if (inputFile.is_open()) {
 while (!inputFile.eof()) {
 Cartesian point;
 inputFile >> point.xCoord;
 inputFile >> point.xCoord;
 inputFile >> point.xCoord;
 vPoints.push_back(point);
 } inputFile.close();

