
1

Chapter 3
Digital Logic
Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Spring Semester 2014

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Spring Semester 2014

Combinational vs. Sequential
! Combinational Circuit

n  does not store information, always gives the same
output for a given set of inputs
! example: adder always generates sum and carry,

regardless of previous inputs
! Sequential Circuit

n  stores information, output depends on stored info
(state) plus input

n  so a given input might produce different outputs,
depending on the stored information

n  useful for building “memory” elements and “state
machines”
! example: ticket counter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Spring Semester 2014

R-S Latch: Simple Storage Element
! R is used to “reset” or “clear” the element – set it

to zero.
! S is used to “set” the element – set it to one.

! If both R and S are one, output could be either
zero or one.
n  “quiescent” state -- holds its previous value
n  if a is 1, b is 0, and vice versa

1

0

1

1

1

1

0

0

1

1

0

0

1

1

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Spring Semester 2014

Clearing the R-S latch

! Suppose we start with output = 1, then change R
to zero.

Output changes to zero.

Then set R=1 to “store” value in quiescent state.

1

0

1

1

1

1

0

0

1

0

1

0

0

0

1

1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Spring Semester 2014

Setting the R-S Latch

! Suppose we start with output = 0, then change S
to zero.

Output changes to one.

Then set S=1 to “store” value in quiescent state.

1

1

0

0

1

1 0

1

1

1

0

0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Spring Semester 2014

R-S Latch Summary

! R = S = 1
n  hold current value in latch

! S = 0, R=1
n  set value to 1

! R = 0, S = 1
n  set value to 0

! R = S = 0
n  both outputs equal one
n  final state determined by electrical properties of gates
n  Don’t do it!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Spring Semester 2014

Gated D-Latch
! Two inputs: D (data) and WE (write enable)

n  when WE = 1, latch is set to value of D
! S = NOT(D), R = D

n  when WE = 0, latch holds previous value
! S = R = 1

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Spring Semester 2014

Register
! A register stores a multi-bit value.

n  We use a collection of D-latches, all controlled by a
common WE.

n  When WE=1, n-bit value D is written to register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Spring Semester 2014

Representing Multi-bit Values
! Number bits from right (0) to left (n-1)

n  just a convention -- could be left to right, but must be
consistent

! Use brackets to denote range:
D[l:r] denotes bit l to bit r, from left to right

! May also see A<14:9>,
especially in hardware block diagrams.

A = 0101001101010101

A[2:0] = 101 A[14:9] = 101001

0 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Spring Semester 2014

Memory
! Now that we know how to store bits,

we can build a memory – a logical k × m array of
stored bits.

• • •

k = 2n

locations

m bits

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Spring Semester 2014

22 x 3 Memory

address
decoder

word select word WE
address

write
enable

input bits

output bits

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Spring Semester 2014

More Memory Details
! Not the way actual memory is implemented!

n  fewer transistors, denser, relies on electrical properties
! But the logical structure is very similar.

n  address decoder, word select line, word write enable
! Random Access Memory: 2 different types

n  Static RAM (SRAM)
! fast, used for caches, maintains data when powered

n  Dynamic RAM (DRAM)
! slower but denser, storage decays, must be refreshed

! Non-Volatile Memory: ROM, PROM, Flash

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Spring Semester 2014

Memory Bandwidth
! Bandwidth is the rate at which memory can be

read or written by the processor.
! Approximately equal to the memory bus size

times the speed at which the memory is clocked.
! Examples of bandwidth (from Wikipedia):

n  Phone line, Modem, up to 5.6KB/s
n  Digital subscriber line, ADSL, up to 128KB/s
n  Wireless networking, 802.11g, up to 17.5MB/s
n  Peripheral connection, USB 2.0, 60MB/s
n  Digital video, HDMI, up to 1.275GB/s
n  Computer bus, PCI Express, up to 25.6GB/s
n  Memory chips, SDRAM, up to 52GB/s

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Spring Semester 2014

Looking Ahead: C Arrays

! Similar to Java arrays

 // integer array
 int iArray[3] = {1,2,3};
 printf(“iArray[2]: %d”, iArray[2]);

 // float array
 float fArray[2] = {0.1f,0.2f};
 printf(“fArray[1]: %f”, fArray[1]);

 // character array
 char cArray[4] = {‘a’,‘b’,‘c’,’d’};
 printf(“cArray[3]: %c”, cArray[3]);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Spring Semester 2014

Looking Ahead: C Strings

! Array of chars with null termination

 // string: static allocation
 char *string1 = “Hello World\n”;
 printf(“string1: %s”, string1);

 // string: dynamic allocation
 char *string2 = (char *)malloc(13);
 strcpy(string2, “Hello World\n”);
 Note that the programmer is responsible for

making sure string has enough memory!

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Spring Semester 2014

Looking Ahead: C Arrays and C Pointers

! Array name is a pointer to array

 int iArray[2] = {1234, 5678};

 printf(“iArray[0]: %d”, iArray[0]);
 printf(“iArray[1]: %d”, iArray[1]);
 printf(“&iArray[0]: %x”, &iArray[0]);
 printf(“&iArray[1]: %x”, &iArray[1]);
 printf(“iArray: %x”, iArray);
 iArray[2] = 0; // out of bounds!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Spring Semester 2014

Looking Ahead: C Functions

! Can pass by value or reference

 // by value (copies value)
 float f1(int i, float f);
 // by reference (copies pointer)
 float f2(float *f);
! Function cannot change values passed by value

 f1: i = 10; // changes the copy
! Function can change values passed by reference

 f2: *f = 1.2; // changes actual value

