Encryption – taking plaintext and feeding it to an encryption algorithm and getting cipher text back
 • performance heavy
 • Symmetric encryption
 • Can attack the algorithm or attack the key
 • Cryptanalysis
 • Can try to brute force the key

DES – Data encryption standard
 • Most widely used
 • Most studied
 • No weaknesses found yet, but only 56 bit key size (which is a weakness)

Triple DES
 • DES with 3 keys
 • More performance heavy

NIST proposal (1997)
 • Must be as strong as triple DES but overcome the performance issues
 • Key lengths must be variable
 • AES chosen (Advanced Encryption Standard)

Collisions
 • Multiple things mapping to one

Hash Algorithms
 • Want it to be computationally unfeasible to detect collisions
 • Longer keys reduce detectable collisions

Symmetric Encryption (Single-key encryption)
 • Need
 • Strong encryption algorithm
 • A key that has been shared in some fashion
 • Attacks
 • Cryptanalytic
 • Need to know nature of the algorithm
 • Need sample plaintext → ciphertext pairs
 • Brute force
 • On average half of the keys must be tried

Strength of Algorithms measured by how long it takes to crack

Block and Stream ciphers
 • Block
 • More common
 • Can reuse keys
 • Processes the input one block at a time
 • Produces output block for each input block
 • Stream
 • Processes input elements continuously
Message Authentication
 • Want to protect against active attacks

Hash Function Requirements
 • Easy to compute
 • Produce fixed length output
 • One way resistant
 • Impossible to find another message with the same hash code
 • SHA – Most widely used hash algorithm