OSI Architecture

The OSI 7-layer Model
OSI – Open Systems Interconnection

Description of Layers

- **Physical Layer**
 - Handles the transmission of raw bits over a communication link
- **Data Link Layer**
 - Collects a stream of bits into a larger aggregate called a frame
 - Network adapter along with device driver in OS implement the protocol in this layer
 - Frames are actually delivered to hosts
- **Network Layer**
 - Handles routing among nodes within a packet-switched network
 - Unit of data exchanged between nodes in this layer is called a packet
- **Transport Layer**
 - Implements a process-to-process channel
 - Unit of data exchanges in this layer is called a message
- **Session Layer**
 - Provides a name space that is used to tie together the potentially different transport streams that are part of a single application
- **Presentation Layer**
 - Concerned about the format of data exchanged between peers
- **Application Layer**
 - Standardize common type of exchanges

The transport layer and the higher layers typically run only on end-hosts and not on the intermediate switches and routers.
Chapter 1

Internet Architecture

Alternative view of the Internet architecture. The “Network” layer shown here is sometimes referred to as the “sub-network” or “link” layer.

Internetworking

- What is IP
 - IP stands for Internet Protocol
 - Key tool used today to build scalable, heterogeneous internetworks
 - It runs on all the nodes in a collection of networks and defines the infrastructure that allows these nodes and networks to function as a single logical internetwork

IP Service Model

- Packet Delivery Model
 - Connectionless model for data delivery
 - Best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
 - Global Addressing Scheme
 - Provides a way to identify all hosts in the network
Packet Format

- Version (4): currently 4
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (not widely used)
- Length (16): number of bytes in this datagram
- Id (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32)

Reliable Byte Stream (TCP)

- Transmission Control Protocol (TCP) offers the following services
 - Reliable
 - Connection oriented
 - Byte-stream service

Flow control VS Congestion control

- Flow control involves preventing senders from overrunning the capacity of the receivers
- Congestion control involves preventing too much data from being injected into the network, thereby causing switches or links to become overloaded
End-to-end Issues

- At the heart of TCP is the sliding window algorithm (discussed in Chapter 2)
- As TCP runs over the Internet rather than a point-to-point link, the following issues need to be addressed by the sliding window algorithm
 - TCP supports logical connections between processes that are running on two different computers in the Internet
 - TCP connections are likely to have widely different RTT times
 - Packets may get reordered in the Internet

TCP Segment

- TCP on the source host buffers enough bytes from the sending process to fill a reasonably sized packet and then sends this packet to its peer on the destination host.
- TCP on the destination host then empties the contents of the packet into a receive buffer, and the receiving process reads from this buffer at its leisure.
- The packets exchanged between TCP peers are called segments.
Chapter 1

TCP Segment

How TCP manages a byte stream.

Chapter 1

TCP Header

TCP Header Format

- The SrcPort and DstPort fields identify the source and destination ports, respectively.
- The Acknowledgment, SequenceNum, and AdvertisedWindow fields are all involved in TCP's sliding window algorithm.
- Because TCP is a byte-oriented protocol, each byte of data has a sequence number; the SequenceNum field contains the sequence number for the first byte of data carried in that segment.
- The Acknowledgment and AdvertisedWindow fields carry information about the flow of data going in the other direction.
TCP Header

- The 6-bit Flags field is used to relay control information between TCP peers.
- The possible flags include SYN, FIN, RESET, PUSH, URG, and ACK.
- The SYN and FIN flags are used when establishing and terminating a TCP connection, respectively.
- The ACK flag is set any time the Acknowledgment field is valid, implying that the receiver should pay attention to it.

- The URG flag signifies that this segment contains urgent data. When this flag is set, the UrgPtr field indicates where the nonurgent data contained in this segment begins.
- The urgent data is contained at the front of the segment body, up to and including a value of UrgPtr bytes into the segment.
- The PUSH flag signifies that the sender invoked the push operation, which indicates to the receiving side of TCP that it should notify the receiving process of this fact.
- Finally, the RESET flag signifies that the receiver has become confused.

Finally, the RESET flag signifies that the receiver has become confused, it received a segment it did not expect to receive—and so wants to abort the connection.

Finally, the Checksum field is used in exactly the same way as for UDP—it is computed over the TCP header, the TCP data, and the pseudoheader, which is made up of the source address, destination address, and length fields from the IP header.
Connection Establishment/Termination in TCP

Timeline for three-way handshake algorithm