Mid-Term Exam

• Tuesday, March 6, 2:00 – 3:15
• you may bring one 8-1/2 x 11 sheet of paper with any notes you would like
• no cellphones
• Calculator allowed; prefer symbolic answers to show your thinking

• This is to assess your understanding of the material covered. There will be concepts, terminology and problems to be solved

• Since you need to study, there will be no homework assigned this week
Suggestions all in 75 minutes...

- Pass 1: Skim Test Quickly – then do easy parts first to build confidence
 - Some questions will take just a few seconds
 - Some questions will take many minutes
- Pass 2: Beginning to End: do what you can, skip hard stuff for now
- Pass 3: Go back and do the stuff you skipped
- Pass 4: Double-check answers; did you circle TRUE or FALSE?

- ANSWERS SHOULD BE BRIEF
Essential Terminology

- **Integrity**
 - Guard against improper information modification or destruction

- **Confidentiality**:
 - Preserve authorized restrictions on information access and disclosure

- **Availability**
 - Ensure time and reliable access to and use of information

- **Authenticity**
 - Verifying that users are who they say they are and that the transmission was valid

- **Accountability**
 - Actions of an entity can be traced uniquely to that entity
Chapter 1 Summary

- Computer security concepts
 - Definition
 - Challenges
 - Model
- Threats, attacks, and assets
 - Threats and attacks
 - Threats and assets
- Security functional requirements

- Fundamental security design principles
- Attack surfaces and attack trees
 - Attack surfaces
 - Attack trees
- Computer security strategy
 - Security policy
 - Security implementation
 - Assurance and evaluation
Chapter 2 Summary

• Confidentiality with symmetric encryption
 ▪ Symmetric encryption
 ▪ Symmetric block encryption algorithms
 ▪ Stream ciphers

• Message authentication and hash functions
 ▪ Authentication using symmetric encryption
 ▪ Message authentication without message encryption
 ▪ Secure hash functions
 ▪ Other applications of hash functions

• Random and pseudorandom numbers
 ▪ The use of random numbers
 ▪ Random versus pseudorandom

• Public-key encryption
 ▪ Structure
 ▪ Applications for public-key cryptosystems
 ▪ Requirements for public-key cryptography
 ▪ Asymmetric encryption algorithms

• Digital signatures and key management
 ▪ Digital signature
 ▪ Public-key certificates
 ▪ Symmetric key exchange using public-key encryption
 ▪ Digital envelopes
Chapter 3 Summary

• Electronic user authentication principles
 – A model for electronic user authentication
 – Means of authentication
 – Risk assessment for user authentication

• Password-based authentication
 – The vulnerability of passwords
 – The use of hashed passwords
 – Password cracking of user-chosen passwords
 – Password file access control
 – Password selection strategies

• Token-based authentication
 – Memory cards
 – Smart cards
 – Electronic identity cards

• Biometric authentication
 – Physical characteristics used in biometric applications
 – Operation of a biometric authentication system
 – Biometric accuracy

• Remote user authentication
 – Password protocol
 – Token protocol
 – Static biometric protocol
 – Dynamic biometric protocol

• Security issues for user authentication
Chapter 4 Summary

• Access control principles
 – Access control context
 – Access control policies

• Subjects, objects, and access rights

• Discretionary access control
 – Access control model
 – Protection domains

• UNIX file access control
 – Traditional UNIX file access control
 – Access control lists in UNIX

• Role-based access control
 – RBAC reference models

• Attribute-based access control
 – Attributes
 – ABAC logical architecture
 – ABAC policies

• Identity, credential, and access management
 – Identity management
 – Credential management
 – Access management
 – Identity federation

• Trust frameworks
 – Traditional identity exchange approach
 – Open identity trust framework

• Bank RBAC system
Chapter 5 Summary

- The need for database security
- Database management systems
- Relational databases
 - Elements of a relational database system
 - Structured Query Language
- SQL injection attacks
 - A typical SQLi attack
 - The injection technique
 - SQLi attack avenues and types
 - SQLi countermeasures
- Inference

- Database access control
 - SQL-based access definition
 - Cascading authorizations
 - Role-based access control
- Database encryption
Chapter 6 Summary

- Types of malicious software (malware)
- Advanced persistent threat
- Propagation
 - Infected content
 - viruses
 - Vulnerability exploit
 - worms
 - Social engineering
 - spam
 - e-mail
 - Trojans

- Payload
 - System corruption
 - Attack agent
 - Zombie
 - Bots
 - Information theft
 - Keyloggers
 - Phishing
 - Spyware
 - Stealthing

- Countermeasures
Chapter 7 Summary

- Denial-of-service attacks
 - The nature of denial-of-service attacks
 - Classic denial-of-service attacks
 - Source address spoofing
 - SYN spoofing

- Flooding attacks
 - ICMP flood
 - UDP flood
 - TCP SYN flood

- Defenses against denial-of-service attacks
- Responding to a denial-of-service attack

- Distributed denial-of-service attacks

- Application-based bandwidth attacks
 - SIP flood
 - HTTP-based attacks

- Reflector and amplifier attacks
 - Reflection attacks
 - Amplification attacks
 - DNS amplification attacks
Hacking Techniques Demonstrated

- SQL Injection
- Database enumeration
- Create a new account by using SQL Injection
- Horizontal Privilege Escalation
- Vertical Privilege Escalation
- XSS (Cross Site Scripting)
- Using a proxy (man-in-the-middle data tampering) to steal $1,000,000