A Very Brief Introduction to Networking

Simplest Network
Local Area Network (LAN)

Network of LANs

Internetworking
- Internetwork = Collection of networks connected via routers
Internet = Virtual Network

Sending a packet from Argon to Neon

DNS: What is the IP address of "neon.tcpip-lab.edu"?
ARP: What is the MAC address of 128.143.71.21?

DNS: The IP address of "neon.tcpip.edu" is 128.143.71.21

Sending a packet from Argon to Neon

Sending a packet from Argon to Neon

Sending a packet from Argon to Neon

ARP: What is the MAC address of 128.143.137.17?
ARP: The MAC address of 128.143.137.1 is 00:e0:fa:23:a8:20

Sending a packet from Argon to Neon

128.143.71.21 is on my local network. Therefore, I can send the packet directly.
Sending a packet from Argon to Neon

ARP: What is the MAC address of 128.143.71.211?

ARP: The MAC address of 128.143.71.1 is 00:20:af:03:98:28

Sending a packet from Argon to Neon

Sending a packet from Argon to Neon

Sending a packet from Argon to Neon
Communications Architecture

- The complexity of the communication task is reduced by using multiple protocol layers:
 - Each protocol is implemented independently
 - Each protocol is responsible for a specific subtask
 - Protocols are grouped in a hierarchy
- A structured set of protocols is called a communications architecture or protocol suite

TCP/IP Protocol Suite

- The TCP/IP protocol suite is the protocol architecture of the Internet
- The TCP/IP suite has four layers: Application, Transport, Network, and Data Link Layer
- End systems (hosts) implement all four layers. Gateways (Routers) only have the bottom two layers.

OSI and TCP/IP Protocol Stack
Functions of the Layers

- **Data Link Layer:**
 - **Service:** Reliable transfer of frames over a link
 - **Media Access Control on a LAN**
 - **Functions:** Framing, media access control, error checking

- **Network Layer:**
 - **Service:** Move packets from source host to destination host
 - **Routing, addressing**

- **Transport Layer:**
 - **Service:** Delivery of data between hosts
 - **Connection establishment/termination, error control, flow control**

- **Application Layer:**
 - **Service:** Application specific (delivery of email, retrieval of documents, reliable transfer of file)
 - **Functions:** Application specific

Assignment of Protocols to Layers

Layered Communications

- An entity of a particular layer can only communicate with:
 1. a **peer layer entity** using a common protocol
Exchange of Data

- The unit of data sent between peer entities is called a Protocol Data Unit (PDU).
- For now, let us think of a PDU as a single packet.

Scenario: Layer-N at A sends a layer-N PDU to layer-N at B.
- What actually happens:
 - A's layer-N passes the PDU to the SAPs at layer-N-1.
 - Layer-N-1 entity at A constructs its own (layer-N-1) PDU which it sends to the layer-N-1 entity at B.
 - PDU at layer-N-1 = layer-N-1 Header + layer-N PDU.

Layers in the Example

Layers in the Example

HTTP
TCP
IP
Ethernet
argon.tcpip-lab.edu 128.143.137.144
router71.tcpip-lab.edu 128.143.137.1 00:e0:79:23:a8:20
router137.tcpip-lab.edu 128.143.71.1
neon.tcpip-lab.edu 128.143.71.21

Send HTTP Request to neon
Establish a connection to 128.143.71.21 at port 80

Open TCP connection to 128.143.71.21 port 80

Send a datagram (which contains a connection request) to 128.143.71.21
Layers in the Example

HTTP
 └── TCP
 └── IP
 └── Ethernet

 argon.tcpip-lab.edu
 128.143.137.144

 router71.tcpip-lab.edu
 128.143.137.1
 00e6f923a820

 router137.tcpip-lab.edu
 128.143.71.7

 neon.tcpip-lab.edu
 128.143.71.21

Encapsulation

- As data is moving down the protocol stack, each protocol is adding layer-specific control information.
Ethernet

- Computer <> Computer communication on same network
- Each device has unique MAC address (48-bit)
 example: 00-C0-4F-48-47-93

Ethernet Packet:

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Dest. address</th>
<th>Source address</th>
<th>Type</th>
<th>Data</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8bytes</td>
<td>6bytes</td>
<td>6bytes</td>
<td>2bytes</td>
<td>64 - 1500bytes</td>
<td>4bytes</td>
</tr>
</tbody>
</table>

MAC: Media Access Control

IP: Internet Protocol

- Unreliable ... connectionless datagram delivery service
- Responsible for routing of data through intermediate networks and computers

IP header:

<table>
<thead>
<tr>
<th>Version</th>
<th>IHL</th>
<th>Type of Protocol</th>
<th>Total Length</th>
<th>Identification</th>
<th>Flags</th>
<th>Fragment Offset</th>
<th>Protocol</th>
<th>Header Length</th>
<th>DataOffset</th>
<th>Data</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>17</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IP: Internet Protocol

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Type</th>
<th>Code</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ICMP: Internet Control Message Protocol

- Used to report problems with delivery of IP Datagrams within an IP network
- Used by Ping, Traceroute commands

ICMP Message

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Types and Codes

- Echo Request (type=8, code=0)
- Echo Reply(type=0, code=0)
- Destination Unreachable(type=3, code=0)
- Time Exceeded(type=11, code=0): Time-to-Live =0
TCP: Transmission Control Protocol
- Connection-Oriented, Reliable, Byte Stream Service Protocol
- 1. Set up connection
- 2. Transfer data
- 3. Close connection

TCP Header Format:

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
<th>Sequence Number</th>
<th>Acknowledgement Number</th>
<th>Window</th>
<th>Offset</th>
<th>Data Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TCP Payload</td>
</tr>
</tbody>
</table>

ARP: Address Resolution Protocol
- ARP provides mapping
 - 32bit IP address <-> 48bit MAC address
 - 128.97.89.153 <-> 00-C0-4F-48-93
- ARP cache
 - maintains the recent mappings from IP addresses to MAC addresses

Protocol:
- 1. ARP request broadcast on Ethernet
- 2. Destination host ARP layer responds

DNS: Domain Name System
- DNS provides mapping
 - www.cs.colostate.edu <-> 129.82.45.114
 - and many other mappings
 - mail servers, IPv6, reverse mapping
- Data is organized as a tree
DNS Protocol

what is www.colostate.edu

Root DNS Server
.edu DNS Server
colostate.edu DNS Server
colostate.edu
.edu
.colostate.edu

129.82.103.106