CS370 Operating Systems
Colorado State University
Yashwant K Malaiya
Fall 2019

Slides based on
- Text by Silberschatz, Galvin, Gagne
- Various sources
Operating Systems

• Part 1: How to do things
 – concurrently/in parallel

• Part 2: How to find stuff
 – Information in a many layered memory system

• Continued technological evolution
 – Techniques and challenges will evolve
 – Very high performance and capacity needed for modern applications: AI, Big Data
Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months. This prediction is known as “Moore’s Law.”

Microprocessors have become smaller, denser, and more powerful.

Moore’s law is dead? / not dead?
Computer Performance Over Time

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniprocessor speed (MIPS)</td>
<td>1</td>
<td>200</td>
<td>2500</td>
<td>2.5K</td>
</tr>
<tr>
<td>CPUs per computer</td>
<td>1</td>
<td>1</td>
<td>10+</td>
<td>10+</td>
</tr>
<tr>
<td>Processor MIPS/$</td>
<td>$100K</td>
<td>$25</td>
<td>$0.20</td>
<td>500K</td>
</tr>
<tr>
<td>DRAM Capacity (MiB)/$</td>
<td>0.002</td>
<td>2</td>
<td>1K</td>
<td>500K</td>
</tr>
<tr>
<td>Disk Capacity (GiB)/$</td>
<td>0.003</td>
<td>7</td>
<td>25K</td>
<td>10M</td>
</tr>
<tr>
<td>Home Internet</td>
<td>300 bps</td>
<td>256 Kbps</td>
<td>20 Mbps</td>
<td>100K</td>
</tr>
<tr>
<td>Machine room network</td>
<td>10 Mbps</td>
<td>100 Mbps</td>
<td>10 Gbps</td>
<td>1000</td>
</tr>
<tr>
<td>Ratio of users to computers</td>
<td>100:1</td>
<td>1:1</td>
<td>1:several</td>
<td>100+</td>
</tr>
</tbody>
</table>

Anderson Dahlin 2014
Storage Capacity

- **Retail** hard disk capacity in GB
Course Resources

• Lectures: discussions, announcements, interaction
 – iClickers
• Canvas (Assignments, submission, grades)
• Piazza: discussions, announcements
• Webpage http://www.cs.colostate.edu/~cs370
 – Home: Overview, contacts
 – Syllabus: Grading, Text, Responsibilities, Policies, Conduct
 – Schedule: Key dates, weekly schedules, slides, assignments, readings
ABOUT ME: Yashwant K. Malaiya

• My Research approach
 – Explore what has not been examined
 – Concepts contributed: Antirandom testing, Detectability Profile, New
 Vulnerability Discovery models, new Software reliability models

Areas in which I have published:

• Computer security
 – Vulnerability discovery
 – Risk evaluation
 – Assessing Impact of security breaches
 – Vulnerability markets

• Hardware and software
 – Testing & test effectiveness
 – Reliability and fault tolerance

• Results have been used by industry, researchers and educators
About me

• Teaching
 – Computer Organization (CS270)
 – Operating systems (CS370)
 – Computer Architecture (CS470)
 – Fault tolerant computing (CS530)

• Professional
 – Organized International Conferences on Microarchitecture, VLSI Design, Testing, Software Reliability
 – Computer Science Accreditation: national & international
 – Professional lectures
 – Advised more than 65 graduate students ..
Contacting us

• Professor
 Yashwant Malaiya Computer Science (CSB 356)
• GTAs, Office Hours in CSB 120
 Kevin Bruhwiler
 Abhishek Yeluri
• Preferred e-mail address cs370@cs.colostate.edu
 – The subject should start as **CS370: ...**
 – Specific email addresses: course web site
• Piazza:
 – Used for updates
 – Private posts will be seen by us.
Topics we will cover in CS 370

• Processes
 – Processes and Threads
 – CPU Scheduling
 – Process Synchronization and Deadlocks

• Memory Management
 – Address translation
 – Virtual memory

• File System interface and management
 – Storage Management
 – File systems

• Virtualization
 – Data centers
 – Containers
Textbook

• Operating Systems Concepts, 10th edition
 Avi Silberschatz, Peter Galvin, and Greg Gagne
eetext package

• May also use materials from other sources including
 – Andrew S Tanenbaum, Modern Operating Systems
 – Thomas Anderson and Michael Dahlin, Operating Systems Principles & Practice
 – System Documentation, articles, news etc.
On the schedule page

• Topics that will be covered and the order in they will be covered
• Readings - chapters that I will cover
• May also see chapters mentions of other resources besides the textbook
• Schedule for when the assignments will be posted and when they are due
 – Subject to dynamic adjustment
Grading breakdown

• Assignments: 25%
 – Programming & written
• Quizzes & interaction 20%
 – On-line and in-class (bring registered iClicker everytime)
• Mid Term: 20%
• Project: 10%
• Final exam: 25%
• You can only take the midterm/final for your section. The two sections are graded independently.
Grading Policy I

- Letter grades will be based on the following standard breakpoints:
 - \(\geq 90 \) is an A, \(\geq 88 \) is an A-
 - \(\geq 86 \) is a B+, \(\geq 80 \) is a B, \(\geq 78 \) is a B-
 - \(\geq 76 \) is a C+, \(\geq 70 \) is a C
 - \(\geq 60 \) is a D, and \(< 60 \) is an F.
- I will not cut higher than this, but I may cut lower.
- There will be no make-up exams
 - Except for documented
 - required university event
 - acceptable family or medical emergency
Grading Policy II

• Plan: Every programming assignment will be posted 12-14 days before the due date. Written assignments will be posted 6-7 days before due date.
 – Every assignment will include specifications and will indicate it will be graded.

• Late submission penalty: 20% for the 24 hours and a ZERO thereafter.

• Detailed submission instructions posted on course website.

• Plan: Assignments will be graded within 2 weeks of submission
What will Quizzes and Tests include?

• I will only ask questions about what I teach, or ask you to study,
 – If I didn’t teach it, I won’t ask from that portion
 – Some on-line quiz questions about current state of technology may require you to search for an answer on the web

• If the concepts were covered in my lectures/slides/assignments
 – You should be able to answer the questions
 – You should be able to apply the concepts

• I will try to avoid questions about arcane aspects of some device controllers etc.
Exams & Assignments

• One mid-term
• The final exam is comprehensive, but more emphasis on the later part
• Quizzes: An on-line quiz almost every week. Iclicker interaction session time to time.
• Programming (5-6) / written (1-2) assignments
• Occasional help-sessions Wednesday 5 PM in CSB 325
 – Including this week
 – Attend or view recordings (required)
• Self exercises: Do them yourselves
Term Project

• Group based
 – Second half of the semester

• Options:
 – Research paper on current/developing technology
 • Paper, presentation, poster-session (dept)
 • Suggested topics will be announced
 – Development
 • IoT/Embedded system with sensor/communication
 • Design and evaluation needed
 • Demo presentations
Electronic devices in lecture room

- Use of Laptops and other electronic devices are not permitted.
- Exception: Permitted only in the last row, with the pledge that you will
 - not distract others, turn off wireless
 - use it only for class related note taking, which must be submitted periodically

- Laptop use lowers student grades, experiment shows, Screens also distract laptop-free classmates
- The Case for Banning Laptops in the Classroom
- Laptop multitasking hinders classroom learning for both users and nearby peers
Be kind to everyone

• You will be courteous to fellow students, instructor and the teaching assistants
 – Classroom, outside, discussion on Piazza

• Do not distract your peers
 – No chatting (except during iClicker sessions)
 – No eating
 – No cellphone use
Help me help you

- Surveys at the end of a class
- You will provide a list of
 - 2 concepts you followed clearly
 - 2 concepts you had problems keeping up
- Questions of interest for the majority of the class will be addressed in the next class
Help Sessions

• Some Wednesdays 5-5:40 PM, CSB 325
• TAs will discuss key techniques and skills
 – Participation strongly encouraged
 – Slides and videos will be on the web site
 – You must be familiar with Help Session materials
• Next week
 – C pointers, dynamic memory allocation
 – Needed for upcoming programming assignment
EXPECTATIONS

• You are expected to attend all classes.
• You must be present during the complete class.
• Assignments have to be done by yourself individually. We will check.
• Expect to work at least 6-8 hours per week outside of class:
 – Designing, coding and testing programs
 – Reviewing material from class
 – Do research for the project
• Concentrate in the class. The class have many new terms and concepts.
Expert view on How to fail this class?

• Believing that you can learn via osmosis

• Missing lectures
 – “If you don’t have the discipline to show up, you will most likely not have the discipline to catch up”
 – Procrastinating

• Get started on the assignments late. Note that they incorporate new concepts, including multiple processes and threads.
Interactions on Piazza

• You must sign up for Piazza
• You can have discussions with me, the GTA, and your peers
• But note
 – No code can be exchanged under any circumstances
 – No one takes over someone else’s keyboard
 – No code may be copied and pasted from anywhere, unless provided by us
• Appropriate use expected
From Operator to Operating System

Switchboard Operator

Computer Operators

©UCB
What is an Operating System?
What is an Operating System?

- **Referee**
 - Manage sharing of resources, Protection, Isolation
 - Resource allocation, isolation, communication

- **Illusionist**
 - Provide clean, easy to use abstractions of physical resources
 - Infinite memory, dedicated machine
 - Higher level objects: files, users, messages
 - Masking limitations, virtualization

- **Glue**
 - Common services
 - Storage, Window system, Networking
 - Sharing, Authorization
 - Look and feel
A Modern processor: SandyBridge

- **Package:** LGA 1155
 - 1155 pins
 - 95W design envelope
- **Cache:**
 - L1: 32K Inst, 32K Data (3 clock access)
 - L2: 256K (8 clock access)
 - Shared L3: 3MB – 20MB (not out yet)
- **Transistor count:**
 - 504 Million (2 cores, 3MB L3)
 - 2.27 Billion (8 cores, 20MB L3)
- Note that ring bus is on high metal layers – above the Shared L3 Cache
Functionality comes with great complexity!

SandyBridge I/O Configuration

Proc → Caches → Busses → Memory → adapters → Controllers → I/O Devices:
- Disks
- Displays
- Keyboards

SandyBridge I/O Configuration diagram:

- Intel Core processors
- DDR3 1333 MHz
- PCI Express 2.0 Graphics
- SandyBridge I/O Configuration
- Intel P67 Express Chipset
- Intel High Definition Audio
- 6 Serial ATA Ports; eSATA; Port Disable
- Intel Rapid Storage Technology
- Intel ME Firmware and BIOS Support
- Intel Extreme Tuning Support
- Intel Gigabit LAN Connect
- 14 Hi-Speed USB 2.0 Ports; Dual EHCI; USB Port Disable
- 8 PCI Express 2.0

Colorado State University

30
Short History of Operating Systems

• One application at a time
 – Had complete control of hardware

• Batch systems
 – Keep CPU busy by having a queue of jobs
 – OS would load next job while current one runs

• Multiple programs on computer at same time
 – Multiprogramming: run multiple programs at seemingly at the “same time”
 – Multiple programs by multiple or single user

• Multiple processors in the same computer

• Multiple OSs on the same computer
Early processors (LC-3 is an example)

- Instructions and data fetched from Main Memory using a program counter (PC)
- Traps and Subroutines
 - Obtaining address to branch to, and coming back
 - Using Stack Frames for holding
 - Prior PC, FP
 - Arguments and local variables
- Dynamic memory allocation and heap
- Global data
One Processor One program View

• External devices: disk, network, screen, keyboard etc.
• Device interface: Status and data registers
• User and Supervisor modes for processor
• I/O
 – Device drivers can use polling or interrupt
 – Interrupts need context switch
 – I/O done in supervisor mode
 – System calls invoke devise drivers
What a simple view don’t include

• Cache between CPU and main memory
 – Makes the main memory appear much faster
• Direct memory access (DMA) between Main Memory and Disk (or network etc)
 – Transfer by blocks at a time
• Neglecting the fact that memory access slower than register access
• Letting program run *concurrently* (Multiprogramming) or with many threads
• Multiple processors in the system (like in Multicore)
• Multiple OSs in the same system
Information transfer in a system

- CPU Registers – (Caches) - Memory
 - CPU addresses memory locations
 - Bytes/words at a time
 - We will see some details

- Memory – (Controllers hw/sw) - external devices
 - Chunks of data
 - External devices have their own timing
 - DMA with interrupts
 - Disk is external!
Central brain

monitor

processor

cache

memory

graphics controller

bridge/memory controller

SCSI controller

PCI bus

IDE disk controller

disk
disk
disk

expansion bus interface

keyboard

parallel port

serial port
I/O Hardware (Cont.)

- I/O Devices usually have registers where device driver places commands, addresses, and data
 - Data-in register, data-out register, status register, control register
 - Typically 1-4 bytes, or FIFO buffer

- Devices have addresses, used by
 - Direct I/O instructions
 - Memory-mapped I/O
 - Device data and command registers mapped to processor address space