
The Bankers Algorithm

First let's consider the situation when there is one resource type, think
of it as units of money (1K dollars), a banker (the OS) who has a certain
number of units in his bank and a number of customers who can loan a certain
number of units from the bank and later pay the loan back (release the
resources). The customers have a credit line that cannot exceed the number of
units initially in the bank, and when they have borrowed their max number of
units, they will pay their loan back.

The banker will grant a loan request only if it does not lead to an unsafe
state. Eg, the banker initially has 10 K, and four customers A, B, C and D
have credit lines 6K, 5K, 4K and 7K respectively. The state when no loans
have been made is then:

 HAS MAX Free:10
 A 0 6
 B 0 5
 C 0 4
 D 0 7

Say at some stage the loan situation is

 HAS MAX Free:2
 A 1 6
 B 1 5
 C 2 4
 D 4 7

Suppose B loans one more unit:

 HAS MAX Free:1
 A 1 6
 B 2 5
 C 2 4
 D 4 7

This is unsafe: if ALL CUSTOMERS ask their MAXIMUM remaining credit, NONE
can be satisfied, and we have deadlock. So, in this case the banker will not
grant B the loan; ie back to

 HAS MAX Free:2
 A 1 6
 B 1 5
 C 2 4
 D 4 7

This state is safe because with 2K left, C can borrow her max remaining
credit:

 HAS MAX Free:0
 A 1 6
 B 1 5
 C 4 4
 D 4 7

finish and release her 4 units and finish

 HAS MAX Free:4
 A 1 6
 B 1 5
 D 4 7

The remaining state is safe. Why?

D can loan its 3 units

 HAS MAX Free:1
 A 1 6
 B 1 5
 D 7 7

and terminate

 HAS MAX Free:8
 A 1 6
 B 1 5

Now A can loan its 5 units and terminate

 HAS MAX Free:9

 B 1 5

and now B can go

 HAS MAX Free:10

So a safe state is a state where a sequence of ALL proceses can get their max
required resources (one at the time) and finish and release all their resources.

MULTIPLE RESOURCE TYPES

The bankers algorithm for multiple resource types extends the method described
above. Say we have five processes, 6 tape drives, 3 plotters, 4 printers, and
2 CD players. At some stage the state is

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 0 0 0 1 1 2 P = 5 3 2 2 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 1 0 2 0 A: Available resources
 D 1 1 0 1 0 0 1 0
 E 0 0 0 0 2 1 1 0

 HAS STILL NEEDS

 The Column sums of the HAS matrix is equal to the vector P. Also, E = P+A,
or A = E-P.

Checking whether the state is safe.

1. Find a process (row) R with unmet resources ALL less than A, ie a process
 that can be granted all its unmet resources. If no such row exists, the state
 is unsafe.
2. Assume process R takes all its resources and finishes. Mark it as
 finished and release its resources back to A.
3. Repeat steps 1 and 2 until either an unsafe state appears, in which case
 there is a potential for deadlock, or all processes finish, in which case
 the original state was safe.

The state in the example above is safe, as D can get a Printer and finish:

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 0 0 0 1 1 2 P = 4 2 2 1 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 2 1 2 1 A: Available resources
 E 0 0 0 0 2 1 1 0

 HAS STILL NEEDS

Then E can get all its resources and finish

Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 0 0 0 1 1 2 P = 4 2 2 1 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 2 1 2 1 A: Available resources

 HAS STILL NEEDS

Then B can go

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 P = 4 1 2 1 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 2 1 2 1 A: Available resources

 HAS STILL NEEDS

Then A can go

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 E = 6 3 4 2 E: Existing resources
 P = 1 1 1 0 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 5 2 3 2 A: Available resources

 HAS STILL NEEDS

And finally C can go

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 E = 6 3 4 2 E: Existing resources
 P = 0 0 0 0 P: Possessed resources
 A = 6 3 4 2 A: Available resources

 HAS STILL NEEDS

Now what about deciding whether a request can be granted. Let's go back to the
original state:

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 0 0 0 1 1 2 P = 5 3 2 2 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 1 0 2 0 A: Available resources
 D 1 1 0 1 0 0 1 0
 E 0 0 0 0 2 1 1 0

 HAS STILL NEEDS

Suppose B requests a printer. This would make the state:

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 1 0 0 1 0 2 P = 5 3 3 2 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 1 0 1 0 A: Available resources
 D 1 1 0 1 0 0 1 0
 E 0 0 0 0 2 1 1 0

 HAS STILL NEEDS

Which is safe, as
D can still finish

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 1 0 0 1 0 2 P = 4 2 3 1 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 2 1 1 1 A: Available resources
 E 0 0 0 0 2 1 1 0

 HAS STILL NEEDS

now E can go

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 A 3 0 1 1 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 1 0 0 1 0 2 P = 4 2 3 1 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 2 1 1 1 A: Available resources

 HAS STILL NEEDS

now A can go

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 1 1 0 0 E = 6 3 4 2 E: Existing resources
 B 0 1 1 0 0 1 0 2 P = 1 2 2 0 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 5 1 2 2 A: Available resources

 HAS STILL NEEDS

now B can go

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 E = 6 3 4 2 E: Existing resources
 P = 1 1 1 0 P: Possessed resources
 C 1 1 1 0 3 1 0 0 A = 5 2 3 2 A: Available resources

 HAS STILL NEEDS

and finally C can go

 Tp Pl Pr CD Tp Pl Pr CD Tp Pl Pr CD
 E = 6 3 4 2 E: Existing resources
 P = 0 0 0 0 P: Possessed resources
 A = 6 3 4 2 A: Available resources

 HAS STILL NEEDS

So the bankers algorithm, upon receiving a request, "pencils" it into the
state and checks whether the state is still safe.

Deadlock Detection

Deadlock occurs fairly rarely, so it is more efficient to check say once
every 10 minutes for deadlock or when the CPU usage is low even though many
processes are waiting, and then deal with it if, it has occurred.

Deadlock detection employs simplified versions of deadlock avoidance algorithms.
In the case of a single resource per resource type we can create a simplified
resource-allocation graph called the WAIT-FOR graph, and in the case of multiple
resi=ource instances per type we can use the check part of the Banker's
algorithm, without dealng with new requests.

Single Resource per Resource Type

 If there is only a single resource per type and we only want to detect deadlock
when it alkready heppened, we don't need th eresources tin the resource
allocation graph. The graph just becomes a Pi waits for Pj (because Pj has the
resource Pi needs). A cycle in that graph then indicates deadlock.

Multiple Resources per Resource Type

The multiple resource deadlock detection algorithm uses the HAS, STILL NEEDS
matrices and the AVAILABLE resources vector. It just checks for the state to be
safe by iteratively marking a process that has needs less than the available
resouce vector and putting the resources that process has back into the
available vector. Unmarked processes at the end of that check are in deadlock
with each other.

Allocation Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2

P2 can finish because it has all the resources it needs.

Allocation Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 3 0 3
P1 2 0 0 2 0 2

P3 2 1 1 1 0 0
P4 0 0 2

Which process can get all the resources it needs to finish?

P0 also has all the resources it needs.

Allocation Request Available
A B C A B C A B C

P0 3 1 3
P1 2 0 0 2 0 2

P3 2 1 1 1 0 0
P4 0 0 2

Which process is next?

Allocation Request Available
A B C A B C A B C

P0 3 1 3
P1 2 0 0 2 0 2

P3 2 1 1 1 0 0
P4 0 0 2

Any of the remaining processes can get the resources it needs – so we are not in deadlock.

Let’s take the situation of :

Allocation Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 1 0 0
P3 2 1 1 1 0 0
P4 0 0 2

P0 can finish

Allocation Request Available
A B C A B C A B C

P0 0 1 0
P1 2 0 0 2 0 2
P2 3 0 3 1 0 0
P3 2 1 1 1 0 0
P4 0 0 2

No one else can get their resources, so we are in deadlock.

Deadlock Recovery

We can either TERMINATE PROCESSES or PREEMPT RESOURCES and give them to other
processes, as we did in deadlock prevention.

Process termination

Terminating all processes in a deadlock cycle is unnecessary, we can succssively
terminate processes until the deadlock disappears (often we need to terminate
only one process). We need to terminate the process that incurs the least cost,
but the cost is not a precise measure. Here are some factors:

 - process priority
 - how long has the process already computed
 - number of resources the process has
 - number of resources a process can still request

Resource Preemption

Remember, preemption should only be applied to resources whose state can be
easily saved and restored (registers, memory). Issues:

 - Select resource and process to preempt. Again there are fuzzy cost measures.

 - Rollback. Where to restart the process that had the preempted resource? We
 can put the process in the wait queue and only when the resource comes back
 restart in the context where the preemption occurred, or we can roll the
 process back to a state where it requested the resource,but that requires
 checkpointing, or we can completely restart the process. It is bad, but
 still better than rebooting the whole system.

 - Starvation. Avoid rolling back the same process all the time, eg using a
 counter.

