This semester you have two options. Note that some of the things are different from past semesters.

A. **Research**: You will research a topic of current interest and at the end prepare a term Project Report. You will also produce a presentation for the benefit of fellow students. If logistics permits, the presentation will take the form of a poster. The objective of this project is for you to explore the state of the art relating to some of the topics in the class.

B. **Development**: Design and implement a new embedded/IoT application using a single-board computer (like a Raspberry Pi or an alternative), which implements the required features. You must formulate, design and implement the system yourself. Your report should provide a good documentation.

Deadlines: The due dates for the deliverables D1 to D4 are subject to revision.

D1. Team composition and idea proposal, Thurs 2/22/18
D2. Progress report Tue 3/27/18 4/3/18
D3. Preliminary report in form of slides (and posters for Option1) Tue 4/24/18
D4. Final report (and demos for Option B) Tue 5/1/18

Forming the groups: You can take the lead and try to form a group (by advertising it on Piazza), or join a group others are trying to form. A group will have 2 or 3 students (4 with permission). You can claim a topic as your own by mentioning it on Piazza with the topic clearly identified in the post title (for example “Research Topic 3: Simultaneous multithreading scheduling and performance”).

A. **Research**

The research term paper will be based on a comprehensive study of a particular topic related to the current state of technology and recent trends. You are required to formulate your own views of the topic once you have understood the concept well. You will also mention how you expect things to evolve in the future.

List of recommended topics: You may choose from the list below. If you want you may choose slightly different topics after consulting with the instructor.

Multithreading:

1. Simultaneous multithreading (e.g. Hyperthreading) architectures
2. Simultaneous multithreading programming issues
3. Simultaneous multithreading scheduling and performance
4. Courseware development for thread pools

Multicore Processors:

5. Scalability of computational performance with the number of processor cores.
6. Parallel programmability. How to reduce the programming effort for multi-core architectures.
7. Resource management. How to utilize and manage computational resources in multicore systems.
8. Virtualization. How does virtualization advance our ability to utilize multicore systems.

Virtualization:

9. Performance Comparison of Virtualization Server Hypervisors: (e.g. KVM, Xen, VMWare, ESXi)
10. Storage virtualization (e.g. Instance Store, Elastic Block Storage, others)
11. Security issues in hypervisors
12. Spot Instances/Auction based pricing mechanisms for virtual machines
13. Live migration of Virtual Machines
14. Virtualization schedulers comparison (e.g. Xen SEDF, Credit, BVT)

Cloud as a system element:

15. Cloud gaming: architecture and performance
16. Cloud backup: performance and reliability
17. Disaster recovery using virtualization

Embedded/IoT systems:

18. Testing embedded system software/hardware
19. IoT reliability evaluation
20. IoT security issues and possible mitigation

Special topics:

21. Blockchain/ Cryptocurrency-oriented operating systems
22. Completely Fair Scheduler and its performance
23. Newer files systems: Ext4 and HDFS

D1: Detailed Abstract:

The first deliverable of the term paper is a detailed abstract, around 1000 words. It should include a brief description of the topic and include a minimum of 8-10 total citations of appropriate papers or references.

It must have the following components:

1. Why is this particular topic important now? Why did you choose it?
2. Why will this be important in the future?
3. A history of how this aspect has evolved in the past? The driving forces behind this.
4. A quick snapshot of the current state of the art for this particular aspect.

Items (3) and (4) should cite at least 6-8 references.

D2: Progress report: It should report on the progress and what the final report is expected to contain. All the references used (at least 8-10) should be cited.
D3: Presentation: The presentation will take the form of a PowerPoint presentation and a poster (depending on logistics). Details will be provided later after the department has scheduled the poster sessions.

D4: Final Report:

The finished term paper should be approximately 4000 words and include a minimum of 10-15 total references supporting the paper. The final term paper must be coherent, succinct, and readable. It should include the following:

1. An introduction that outlines the rationale, organization, and key contributions of the term paper.
2. A literature survey of the topics that contrasts different approaches to the problem.
3. Limitations in the current approaches that may not be suitable in the future, and potential improvements.
4. At least some non-text elements – figures, tables, mathematical analysis, algorithms etc.
5. A conclusion that includes assertions about the state of the art of the topic that you have surveyed. This will also include 4-5 key assertions about what you expect things to look like in the next 2-4 years.

The final report will be in two-column format used by IEEE/ACM. Both the Detailed Abstract and the Final Report (and the related poster) will need to be submitted as pdf files using Canvas.

Grading

This assignment would be worth 15 points towards your final grade. The points are broken down the following way.

D1. Team composition and idea proposal, 2 points
D2. Progress report, 3 points
D3. Preliminary report in form of slides (and posters for Option1) 3 points
D4. Final report (and demos for Option B), participation and peer reviews, 7 points

B: Development

As part of this Term Project option, you will be developing and evaluating a system built using a single-board computer.

Requirements:

Project must involve a single board computer (such as a Raspberry Pi) with wifi capability which must have the capability of having an operating system installed on it. The board must be capable of running all the project requirements satisfactorily
The board will communicate with at least one other computer [another board, laptop or networked computer] and with at least one sensing device [sensor (temperature, pressure, location etc), camera or a computation device supplying data]. Optionally it can have an actuator [to control mechanical movements]. After you have built your system, will evaluate for at least one attribute (potential security holes, power consumption, available resolution or reliability).

You can use this document from last semester as a guide for setting up your board. (It is Raspberry Pi specific. You need to locate similar information for other boards.)

D1. Team composition and idea proposal

You will specify the project objective, select the appropriate board, and specific hardware and software needed. Your proposal must include a one paragraph justification of the choices. A back-of-napkin drawing can be included. Identify from where the board will be ordered (Please ensure that you will receive it within a week or so), and how you will obtain the needed software and documentation.

D2. Progress report

At this point you must have acquired and installed all the software and hardware needed and should have made some progress in developing the code needed. You need to include proof that you have acquired the board and any hardware needed. The report will describe the status of the project. You should also mention which attribute of your project you propose to evaluate. You must evaluate at least one of these.

- Limitations like resolution, accuracy or response time
- Potential security holes and how they can be mitigated
- Power consumption estimates of the device
- Cost and marketability of a device based on your project

D3. Preliminary report in form of slides

A set of slides will be needed to be shared with the rest of the class.

D4. Final report and demo:

You will demonstrate your project to a TA for about 10-15 minutes. You will need to make an appointment. You can use photos and videos if they will help.

The final report that you will submit will be a complete documentation of your project. In addition, the code developed will also need to be submitted.

Updates:

- Progress report for both options is now Tue 4/3/18