Know what radiosity computation does. Do not expect to implement nor see underlying equations this semester.
Example Courtesy of Nikolay Radaev

Rendered using 3D Studio Max (+VRay Plugin)
Now – The Journey to 2D Rotation

A WEBCOMIC OF ROMANCE, SARCASTIC, MATH, AND LANGUAGE.

xkcd updates every Monday, Wednesday, and Friday.

MATRIX TRANSFORM

\[
\begin{bmatrix}
\cos 90^\circ & \sin 90^\circ \\
-\sin 90^\circ & \cos 90^\circ
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Vectors, Points & Matrices

• The geometry for graphics rests upon
 – Scalars, Vectors, Points, and Matrices
• And why? The short answer.
 – Objects are collections of points
 – Light rays are vectors
 – Objects & Light interact in Euclidean spaces
 – Placement in space is done using matrices
• Now for the longer answer…
But let’s start with… Scalars

- Scalar - a number.
 - Two Operations -
 - Addition, Multiplication.
 - Axioms
 - Associative
 - Commutative
 - Invertible
- Invertible implies
 - Subtraction
 - Division

$\alpha + \beta = \beta + \alpha$
$\alpha \cdot \beta = \beta \cdot \alpha$
$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
Vectors

• Vector - direction and magnitude
 – Two Operations -
 • Scalar-vector multiplication
 • Vector-vector addition
 – Often expressed as an n-tuple of scalars.

\[\mathbf{v} = [v_1, v_2, v_3, \ldots, v_n] \]
Test: Do you Get It?

• Are these two vectors the same?
Vector Spaces

- Linear combinations of vectors generate new vectors.

\[u = \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \alpha_3 \cdot v_3 \]

for example ...

\[
\begin{bmatrix}
3 \\
4 \\
1
\end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
\]

or \[u = 3 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \]
Key Vector Space Concepts

• Span
 – The space of all vectors that can be created by linear combinations of a set of vectors

• Basis Vectors
 – A set of vectors that span a space
 – Generally focus on basis vectors that are
 • Orthogonal to each other (independent axes)
 • Unit length

• Orthonormal
 – Fancy term for a set of vectors that are orthogonal and unit length
Orthogonal?

A

B

C

D
Vectors beg “Where are we?”

Directly over the center of the Earth?

• More seriously, vector spaces lack location
 – Location requires an origin: a reference.
• Vector spaces have no origin.
• Affine spaces introduce an origin.
 – They do this by introducing Points.
• New operations
 – Point-point subtraction yields a vector.
 – A point plus a vector yields a point.
Point + Vector = Point

– Linear combinations of basis vectors
– … and a specified origin - a point.

\[P = O + \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \alpha_3 \cdot v_3 \]

for example ...

\[
\begin{bmatrix}
7 \\
4 \\
3
\end{bmatrix}
= 2 + 5 \cdot 0 + 2 \cdot 1 + 1 \cdot 0
\]

With an origin, you always know where you are (relatively).
But Wait, …

• Do Points Exist Without Coordinates?
 The answer is – yes!
 – We are adopting the physicists view.
• Why does this matter …

In graphics, keeping the intrinsic geometry of objects separate from their coordinate manifestation in a particular frame of reference is essential.
Same Point - By Example

- The Sphere has intrinsic properties.
 - Independent of reference frame A (or B).
Intrinsic Properties

• What matters is the relation of the data to the reference frame.
 – Moving the sphere toward the reference point is the same as moving the reference point toward the sphere
 – The same sphere can be expressed in different reference frames

• “World Coordinates” aren’t special
 – As long as all the data is expressed relative to the same reference frame
Where is a Point Revisited

• To specify a point in a Euclidean space.

\[P = O + x v_1 + y v_2 \]

\[
\begin{align*}
|p_x| &= x_o + x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\
|p_y| &= y_o + x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\end{align*}
\]
A Point named Fred

Which is it? $Fred = \left| \frac{6}{6} \right|$ or $Fred = \left| \frac{4}{3} \right|$
2D Translation

• Think about the previous example
• Can you decide between
 – Fred was moved down and to the left.
 – Reference frame was moved up and to the right.
• Generally you cannot
• More important

Often in graphics it is equally valid, or even preferable, to think of movement as shifting a reference frame rather than moving an object.
\[|x| = \frac{6}{6} \text{ and } |u| = \frac{4}{3} \text{ as translation } \frac{6}{6} = \frac{4}{3} + \frac{2}{3} \]
Affine to Euclidean Space

• Euclidean Space adds to affine space a new operation, the *dot product*.

• You all know the algebraic definition.

\[
 u \cdot v = \sum_i u_i v_i \quad |v| = \sqrt{v \cdot v}
\]

• Do you know its geometric interpretation?

\[
 u \cdot v = |u||v|\cos(\theta)
\]

• If the dot product is zero, the vectors are orthogonal
Dot Product Yields Projection

• To start, set origin at zero. Now observe.

\[
\begin{bmatrix}
p_x \\ p_y
\end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} y \implies x = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

The distance of a point from the origin along a dimension, i.e. along a basis vector, is measured by a dot product between the point and the basis vector.
Know & Love Dot Products 1

• An easy way to define a line ...

\[L \Rightarrow F(x, y) = 0 \]
\[n \cdot L - \rho = 0 \quad n \cdot n = 1 \]
\[\rho = n \cdot P = n_x p_x + n_y p_y \]
\[\begin{vmatrix} n_x \end{vmatrix} \cdot \begin{vmatrix} x \end{vmatrix} - \rho = 0 \]
\[\begin{vmatrix} n_y \end{vmatrix} \cdot \begin{vmatrix} y \end{vmatrix} \]
\[n_x x + n_y y - \rho = 0 \]
And in 3D

Riddle: What do you call all points a distance of 3 from the origin measured in a direction defined by a vector n?

$$P = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad n = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$F = \frac{2}{3} x + \frac{2}{3} y + \frac{1}{3} z - 3$$
Further Dot Product Motivation

Above you see how almost all texts and courses introduction 2D rotation. This is entirely correct, but there is a more intuitive way to understand rotation.
• Consider an alternate basis

\[
\begin{align*}
 p_x & = x_o + u \\
 p_y & = y_o + v \\
 u & = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} x + x_o \\
 v & = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} y + y_o
\end{align*}
\]
Welcome to 2D Rotation

\[
\begin{bmatrix}
 x_o \\
 y_o
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]

Put origin at zero zero (common)

\[
\begin{bmatrix}
 u \\
 v
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
 \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

These are the same!

\[
\begin{bmatrix}
 u \\
 v
\end{bmatrix} = \begin{bmatrix}
 \cos(45^\circ) & -\sin(45^\circ) \\
 \sin(45^\circ) & \cos(45^\circ)
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Rotate by θ

$$M = RP$$

$$R = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix} \quad P = \begin{bmatrix}
x \\
y
\end{bmatrix}$$

$$\begin{bmatrix}
\cos(\theta) x - \sin(\theta) y \\
\sin(\theta) x + \cos(\theta) y
\end{bmatrix} = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}$$

Does this make sense, given the geometry of the dot product?
More Standard Approach

Derivation of Rotation Matrix

\[
x_1 = r \cos(\theta) \quad x_2 = r \cos(\theta + \phi) \\
y_1 = r \sin(\theta) \quad y_2 = r \sin(\theta + \phi)
\]
Derivation (cont.)

Magic Trig Identity:

\[
\begin{align*}
\cos(a + b) &= \cos(a)\cos(b) - \sin(a)\sin(b) \\
\sin(a + b) &= \sin(a)\cos(b) + \sin(b)\cos(a)
\end{align*}
\]

\[
x_2 = r \cos(\theta + \phi) = r \cos(\theta)\cos(\phi) - r \sin(\theta)\sin(\phi)
\]

\[
x_2 = x_1 \cos(\phi) - y_1 \sin(\phi)
\]

Note: the process for \(y_2\) is the same
The End