Lecture 3: Biology Basics Continued

Fall 2018
August 28, 2018
Genotype/Phenotype

Phenotype:
- Blue eyes
- Brown eyes

Genotype:
- Recessive: bb
- Dominant: Bb or BB
• Genes are shown in **relative order** and distance from each other based on pedigree studies.
• The chance of the chromosome breaking between A & C is higher than the chance of the chromosome breaking between A & B during meiosis
• Similarly, the chance of the chromosome breaking between E & F is higher than the chance of the chromosome breaking between F & G
• The closer two genes are, the more likely they are to be inherited together (co-occurrence)
• If pedigree studies show a high incidence of co-occurrence, those genes will be located close together on a genetic map
• **Pleiotropy**: when one gene affects many different traits.

• **Polygenic traits**: when one trait is governed by multiple genes, which maybe on the same chromosome or on different chromosomes.

 – The additive effects of numerous genes on a single phenotype create a continuum of possible outcomes.

 – Polygenic traits are also most susceptible to environmental influences.
Pleiotropy in humans: Phenylketonuria

A disorder that is caused by a deficiency of the enzyme phenylalanine hydroxylase, which is necessary to convert the essential amino acid phenylalanine to tyrosine.

A **defect in the single gene** that codes for this enzyme therefore results in the multiple phenotypes associated with PKU, including mental retardation, eczema, and pigment defects that make affected individuals lighter skinned.
Polygenic Inheritance in Humans

- **Height** is controlled by polygenes for skeleton height, but their effect may be affected by malnutrition, injury, and disease.
- Weight, skin color, and intelligence.
- **Birth defects** like clubfoot, cleft palate, or neural tube defects are also the result of multiple gene interactions.
- **Complex diseases and traits** have a tendency to have low heritability (tendency to be inherited) compared to single gene disorders (i.e. sickle-cell anemia, cystic fibrosis, **PKU**, Hemophelia, many extremely rare genetic disorders).
Selection

- Some genes may be subject to selection, where individuals with advantages or “adaptive” traits tend to be more successful than their peers reproductively.
- When these traits have a genetic basis, selection can increase the prevalence of those traits, because the offspring will inherit those traits. This may correlate with the organism's ability to survive in its environment.
- Several different genotypes (and possibly phenotypes) may then coexist in a population. In this case, their genetic differences are called polymorphisms.
Genetic Mutation

• The simplest is the point mutation or substitution; here, a single nucleotide in the genome is changed (single nucleotide polymorphisms (SNPs))

• Other types of mutations include the following:
 – **Insertion.** A piece of DNA is inserted into the genome at a certain position
 – **Deletion.** A piece of DNA is cut from the genome at a certain position
 – **Inversion.** A piece of DNA is cut, flipped around and then re-inserted, thereby converting it into its complement
 – **Translocation.** A piece of DNA is moved to a different position.
 – **Duplication.** A copy of a piece of DNA is inserted into the genome
Mutations and Selection

• While mutations can be detrimental to the affected individual, they can also, in rare cases, be beneficial; more frequently, neutral.
• Often mutations have no or negligible impact on survival and reproduction.
• Thereby mutations can increase the genetic diversity of a population, that is, the number of present polymorphisms.
• In combination with selection, this allow a species to adapt to changing environmental conditions and to survive in the long term.
Raw Sequence Data

• 4 bases: A, C, G, T + other (i.e. N = any, etc.)
 – kb (= kbp) = kilo base pairs = 1,000 bp
 – Mb = mega base pairs = 1,000,000 bp
 – Gb = giga base pairs = 1,000,000,000 bp.

• Size:
 – E. Coli 4.6Mbp (4,600,000)
 – Fish 130 Gbp (130,000,000,000)
 – Paris japonica (Plant) 150 Gbp
 – Human 3.2Gbp
A sequence in FASTA format begins with a single-line description, followed by lines of sequence data (file extension is .fa).

It is recommended that all lines of text be shorter than 80 characters.
Fastq File

• Typically contain 4 lines:
 – Line 1 begins with a '@' character and is followed by a sequence identifier and an *optional* description.
 – Line 2 is the sequence.
 – Line 3 is the delimiter ‘+’, with an optional description.
 – Line 4 is the quality score.
 – file extension is .fq

@SEQ_ID
GATTTGGGGTTCAAAGCTTCAAAGCTTCAAAGC
+
! ' * ((((***+)) % % % + + + + + + + + ! ! ! +++***
Central Dogma
Discovery of DNA

- DNA Sequences
 - Chargaff and Vischer, 1949
 - DNA consisting of A, T, G, C
 - Adenine, Guanine, Cytosine, Thymine
 - Chargaff Rule
 - Noticing $\#A = \#T$ and $\#G = \#C$
 - A “strange but possibly meaningless” phenomenon.

- Wow!! A Double Helix
 - 1 Biologist
 - 1 Physics Ph.D. Student
 - Total 900 words
 - Nobel Prize
 - Rich, 1973
 - Structural biologist at MIT.
 - DNA’s structure in atomic resolution.
Watson & Crick – “...the secret of life”

- Watson: a zoologist, Crick: a physicist

- “In 1947 Crick knew no biology and practically no organic chemistry or crystallography..” – www.nobel.se

- Applying Chagraff’s rules and the X-ray image from Rosalind Franklin, they constructed a “tinkertoy” model showing the double helix.

- Their 1953 Nature paper: “It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.”
Superstructure

Superstructure implications

• DNA in a living cell is in a highly compacted and structured state.

• Transcription factors and RNA polymerase need ACCESS to do their work.

• Transcription is dependent on the structural state – SEQUENCE alone does not tell the whole story.
RNA

- RNA is similar to DNA chemically. It is usually only a single strand. T(thyamine) is replaced by U(racil).

- RNA can form secondary structures by “pairing up”

![tRNA linear and 3D view:](http://www.cgl.ucsf.edu/home/glasfeld/tutorial/trna/trna.gif)
RNA, continued

• Several types exist, classified by function
• mRNA – carries a gene’s message out of the nucleus.
• tRNA – transfers genetic information from mRNA to an amino acid sequence
• rRNA – ribosomal RNA. Part of the ribosome machine.
Protein

- A polymer composed of amino acids.
- There are 20 naturally occurring amino acids.
- Usually functions through molecular motion or binding with other molecules.
Proteins: Primary Structure

• Peptide sequence:
 – Sequence of amino acids = sequences from a 20 letter alphabet (i.e. ACDEFGHIKLMNPQRSTVWY)
 – Average protein has ~300 amino acids
 – Typically stored as fasta files

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]
LCLYTHIGRNIYYGSYLSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPTYIGTNLV
EWIWWGFVSVDKATLNRFPAFHFLPFTMVALAGVHLETFLHETGSNNPLGLTSDSDKIPFHPYTYTIKDFLG
LLILILLLLLLLLALSPDMLGDPDNHMPADPLNTPLHIIKPEWYFLFAYAILRSVPNKLGGLGVLALFLSIVIL
GLMPFLHTSKHRSMMLRPLSQALFWTTLTMDLLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX
IENY
Naturally Occurring Amino Acids

- Alanine [Ala]
- Arginine [Arg]
- Asparagine [Asn]
- Aspartic acid [Asp]
- Cysteine [Cys]
- Glutamine [Gln]
- Glutamic acid [Glu]
- Glycine [Gly]
- Histidine [His]
- Isoleucine [Ile]
- Leucine [Leu]
- Lysine [Lys]
- Methionine [Met]
- Phenylalanine [Phe]
- Proline [Pro]
- Serine [Ser]
- Threonine [Thr]
- Tryptophan [Trp]
- Tyrosine [Tyr]
- Valine [Val]
Proteins: Secondary Structure

• Polypeptide chains fold into regular local structures
 – Common types: alpha helix, beta sheet, turn, loop
 – Defined by the creation of hydrogen bonds
Proteins: Tertiary Structure

- 3D structure of a polypeptide sequence
 - interactions between non-local and foreign atoms
Proteins: Quaternary Structure

- Arrangement of protein subunits
Conclusions
Challenges in Bioinformatics

• Need to feel comfortable in interdisciplinary area
• Depend on others for primary data
• Need to address important biological and computer science problems
Basic Steps in Bioinformatics Research

1. Data management problem: storage, transfer, transformation (Information Technology)
2. Data analysis problem: mapping, assembly
 – algorithm scaling (Computer Science)
3. Statistical challenges: traditional statistics is not well suited for modeling systematic errors over large number of observations (Biostatistics)
4. Biological hypothesis testing
 – data interpretation (Life Science)
Basic Skills

- Artificial intelligence and machine learning
- Statistics and probability
- Algorithms
- Databases
- Programming
- Biology/Chemistry knowledge
Genomics:
- Assembly
- Detection of variation
- GWAS

RNA:
- Gene expression
- Transcriptome assembly
- Pathway analysis
- RNA-RNA interaction

Protein:
- Mass spectrometry
- Structure prediction
- Protein-Protein interaction