Lecture 7: RNA folding

Chapter 6 – Problem 6.51 in Jones and Pevzner and the Turner model

Spring 2017
February 7, 2017
RNA Basics

- RNA bases A, C, G, U
- Canonical Base Pairs
 - A-U
 - G-C
 - G-U “wobble” pairing
 - Bases can only pair with one other base.

RNA Structural Levels

AAU CG...CUUCU UCCA
Primary

Secondary

Tertiary
RNA Secondary Structure

- Stack
- Single-Stranded
- Bulge Loop
- Internal Loop
- Hairpin loop
- Pseudoknot
- Junction (Multiloop)
Base Pair Maximization

Base Pair Maximization – Dynamic Programming Algorithm

Simple Example: Maximizing Base Pairing
Base Pair Maximization – Dynamic Programming Algorithm

$S(i,j)$ is the folding of the subsequence of the RNA strand from index i to index j which results in the highest number of base pairs.

$$S(i,j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i,j \text{ base pair]} \\
S(i + 1, j) \\
S(i, j - 1) \\
\max_{i < k < j} S(i, k) + S(k + 1, j)
\end{cases}$$
Base Pair Maximization – Dynamic Programming Algorithm

\[
S(i,j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i,j \text{ base pair]} \\
S(i + 1, j) \\
S(i, j - 1) \\
\max_{i < k < j} S(i, k) + S(k + 1, j)
\end{cases}
\]
Base Pair Maximization – Dynamic Programming Algorithm

\[S(i,j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i,j \text{ base pair]} \\
S(i + 1, j) \\
S(i, j - 1) \\
\max_{i < k < j} S(i,k) + S(k + 1, j)
\end{cases} \]
Base Pair Maximization – Dynamic Programming Algorithm

\[S(i,j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i,j \text{ base pair]} \\
S(i + 1, j) \\
S(i, j - 1) \\
\max_{i < k < j} S(i, k) + S(k + 1, j)
\end{cases} \]
Base Pair Maximization – Dynamic Programming Algorithm

\[S(i,j) = \max \begin{cases}
 S(i+1,j-1) + 1 & \text{[if } i,j \text{ base pair]} \\
 S(i+1,j) \\
 S(i,j-1) \\
 \max_{i<k<j} S(i,k) + S(k+1,j)
\end{cases} \]
Base Pair Maximization – Dynamic Programming Algorithm

\[S(i, j) = \max \begin{cases} S(i + 1, j - 1) + 1 & \text{[if } i, j \text{ base pair]} \\ S(i + 1, j) \\ S(i, j - 1) \\ \max_{i < k < j} S(i, k) + S(k + 1, j) \end{cases} \]
Circular Representation

Images – David Mount
Pseudoknots cause a breakdown in the presented Dynamic Programming Algorithm.

In order to form a pseudoknot, checks must be made to ensure base is not already paired – this breaks down the divide and conquer recurrence relations.
Simplifying Assumptions

• RNA folds into one minimum free-energy structure.
• There are no knots (base pairs never cross).
• The energy of a particular base pair in a double stranded region is sequence independent.
 • Neighbors do not influence the energy.

• Was solved by dynamic programming, Zucker and Steigler 1981
Sequence Dependent Base Pair Energy Values (Nearest Neighbor Model)

Example values:

<table>
<thead>
<tr>
<th>Pair</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>-2.3</td>
</tr>
<tr>
<td>GC</td>
<td>-2.9</td>
</tr>
<tr>
<td>GC</td>
<td>-3.4</td>
</tr>
<tr>
<td>GC</td>
<td>-2.1</td>
</tr>
<tr>
<td>AU</td>
<td>-2.3</td>
</tr>
<tr>
<td>GC</td>
<td>-2.9</td>
</tr>
<tr>
<td>GC</td>
<td>-3.4</td>
</tr>
<tr>
<td>UA</td>
<td>-2.1</td>
</tr>
</tbody>
</table>
Free Energy Computation (Nearest Neighbor Model)

\[\Delta G = -4.9 \text{ kcal/mol} \]
RNA Secondary Structure
Nearest Neighbor Model

- Stacking energy - assign negative energies to these *between base pair* regions.
 - Energy is influenced by the nearest closing base pair
 - These energies are estimated experimentally from small synthetic RNAs.

- Positive energy - added for low entropy regions such as bulges, loops, etc.
RNA Secondary Structure

Hairpin loop
Nearest Neighbor Model

- Hairpin energy:
 - Experimentally measured for hairpins of length 5, 6, 7, 8, ... up to a maximum. Extrapolation above the maximum.
 - The closing pair affects the energy. Distinguish between A-U and C-G.
RNA Secondary Structure

Bulge Loop

Internal Loop
Nearest Neighbor Model

• Bulge/Internal energy:
 • Let L_1, L_2 denote the lengths of the two sides of the bulge/internal loop.
 • Experimentally measured for different values of L_1, L_2.
 • In practice for computational convenience, the energy is given as function of $L_1 + L_2$ by a lookup table and extrapolation.
RNA Secondary Structure

Junction (Multiloop)
Nearest Neighbor Model

- **Multiloop energy:**
 - Let U denote the number of unpaired bases.
 - Let P denote the number of base pairs.
 - The free energy is an affine function of U and P:
 \[a_1 + a_2 U + a_3 P. \]
 - This is the least accurate component of the NN model.