CS435: Introduction to Big Data

GTA: Bibek R. Shrestha
Email: cs435@cs.colostate.edu

March 23, 2018
Today...

- Discussion on issues in Programming Assignment 2
How to program PA2: Part-A?

First MapReduce Job:

- Similar to first part of Profile 2 in PA1
- Calculate frequency of word in each document.
- Output of Mapper will be in the form:
 - (DocumentID, unigram, 1)
- Output from this job/reducer will be in the form:
 - (DocumentID, unigram, frequency)
- You can use CompositeKey class or you can just concatenate your keys as single string with a delimiter in-between.
Second MapReduce Job:

- **Objective: To calculate TF value**
- Use output from your first mapreduce job.
- Output of Mapper will be in the form:
 - (DocumentID, \{unigram, frequency\})
- In your reducer, you will have a list of \{unigram, frequency\} (as value) for each DocumentID (as key).
- Find the max. frequency \(\max_k f_{kj} \)
- Calculate TF for each unigram using:
 - \[TF_{ij} = 0.5 + 0.5 \left(\frac{f_{ij}}{\max_k f_{kj}} \right) \]
- Output of Reducer will be in the form:
 - (DocumentID, \{unigram, frequency, TFvalue\})
Hint for Second Job

To calculate: $TF_{ij} = 0.5 + 0.5 \left(\frac{f_{ij}}{\max_k f_{kj}} \right)$

- Make sure TF_{ij} and are $\max_k f_k$ Double variables.

- In your reducer, after you iterate through reducer value: `Iterable<Text> values`, make sure you maintain a copy `values` for next iteration.

- Output of reducer can be (we do not need frequency):
 - `(DocumentID, \{unigram, TFvalue\})`
Third MapReduce Job:

- Calculate IDF value
- For that, first calculate n_i, total number of documents in whole corpus where unigram i occurred, for: $IDF_i = \log_{10}(N/n_i)$
- Use output from your second mapreduce job.
- Output of Mapper will be in the form:
 - (unigram, {DocumentID, TFvalue})
- In your reducer, you will have a list of {DocumentID, TFvalue} (as value) for each unigram (as key).
- The size of the list gives n_i.
- Output of Reducer will be in the form:
 - (unigram, {DocumentID, TFvalue, n_i})
Hint for Third Job

- If you used Counters in one of the previous jobs, you can calculate IDF and thus, TF-IDF in your reducer. (You do not need Job4.)
Break...How to get the value of N?

- N is the total number of unique documents in the given dataset.
- Used to calculate IDF as: $IDF_i = \log_{10}(N/n_i)$
- We can use Counters class implemented in Hadoop.
- Do not hard-code this value.
- References:

 https://stackoverflow.com/questions/27325536/how-to-access-hadoop-counters-values-via-api
Fourth MapReduce Job:

- Calculate IDF and TF-IDF values

- With output from previous job, \((\text{unigram}, \{\text{DocumentID}, \text{TFvalue}, n_i\})\), calculate IDF using: \(\text{IDF}_i = \log_{10}(N/n_i)\)

- Using TF and IDF, calculate TF-IDF.

- Output of Mapper will be in the form:
 - \((\text{DocumentID}, \{\text{unigram}, \text{TFvalue}, \text{TF-IDFvalue}\})\)

- In reducer, arrange your output field, if required.

- Functionally, reducer is not required. Identity Reducer!
Fifth MapReduce Job:

- Calculate \(\text{Sentence}_{TF-IDF}\) values
- We have to use output from previous job and the data from original dataset. Why?
 - Hint: Use MultipleInputs.addInputPath() and join them on keys. OR, use output of fourth job as lookup. May be persist it in Hadoop’s DistributedCache!
- Split on periods to get each sentence. Tokenize to get each unigram.
- Now use the output from fourth job to get TF-IDF value for each unigram.
- Select top 5 words with highest TF-IDF values. Sum those values. This is \(\text{Sentence}_{TF-IDF}\).
- Calculate \(\text{Sentence}_{TF-IDF}\) for each sentence in the document.
- Mapper output will be in the form:
 - (DocumentID, \{eachSentence, \(\text{Sentence}_{TF-IDF}\)\})
- In your reducer, select top 3 sentences with highest \(\text{Sentence}_{TF-IDF}\).
- Final output will be in the form:
 - (DocumentID, (Top three sentences))
Hint for Fifth Job

- To hold the values stored in DistributedCache, you can maintain a HashMap or use two ArrayList.
- You might encounter exception if you heap space is insufficient.
- Increase your heap memory for Map task. (Link: Thread @147 in piazza; post titled Error Message).
Background for Programming Assignment 3

- Download Apache Spark binary (pre-build for Hadoop 2.7 and later): https://spark.apache.org/downloads.html
- Go through the documentation: https://spark.apache.org/docs/latest/quick-start.html
- Create Maven project and setup Spark on IDE to run WordCount program. Reference:
 Recitation 6
 https://echo360.org/media/ab0a79d6-1760-4259-babf-6beea0bf21a3/public
- Try to setup Spark cluster on top of your Hadoop cluster.
 https://www.cs.colostate.edu/~cs535/PA1-Info/Apache-Spark.pdf
In the next recitation...

- Introduction to Programming Assignment 3