PART 0. INTRODUCTION: WHAT IS BIGDATA?

Sangmi Lee Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs435

Goals of this course

• Understanding fundamental concepts in Big Data
• Learn about effective Big Data technologies and how to apply them
 • Computing paradigms
 • Data retrieval methodologies
 • Data analytics patterns
 • Dataflow management for large applications
 • Scalable algorithms

What is Big Data?

Big Data

• Things one can do at a large scale that cannot be done at a smaller one
 • To extract new insights
 • Create new forms of values

• Big Data is about analytics of huge quantities of data in order to infer probabilities
 • Big Data is NOT about trying to "teach" a computer to "think" like humans

• Providing a quantitative dimension it never had before

The three Vs in Big Data

• **Volume**
 • Voluminous
 • It does not have to be certain number of petabytes or quantity.

• **Velocity**
 • How fast the data is coming in
 • How fast you need to be able to analyze and utilize it

• **Variety**
 • Number of sources or incoming vectors
Use all of the data, or just a little? [1/5]

- Estimate the population of London, which is then used to estimate the number of eligible 'fighting men' available to the king.
- Dispel the myth that the plague was more rife in years of monarchy changes.
- Investigate how London was expanding.

[Image of John Graunt and a map]

http://www.biography.com/biographies/john-graunt-384,000

Use all of the data, or just a little? [2/5]

- Using a 1658 map he assumed that there were 54 families living in each space of 100 yards square.
- The number of deaths in London as a whole, both within and outside the walls, was four times the number of deaths within the walls alone.

[Image of John Graunt and a map showing population]

http://www.biography.com/biographies/john-graunt-384,000

Use all of the data, or just a little? [3/5]

- John Graunt’s population example.
- “Usually [Graunt] explained his steps in solving problems, but he seldom included the actual calculations; and sometimes he omitted important information. Furthermore, his indirect approach sometimes went beyond the reliable use of his data, and the accuracy of some of his answers was difficult to evaluate.” -- the Dictionary of Scientific Biography, Frank N. Egerton

- How do we generate “The Life Tables” now?

Use all of the data, or just a little? [4/5]

- Conducting censuses
 - Costly and time-consuming
 - The US Constitution mandated one every decade
 - As the growing country measured itself in millions
 - By the late nineteenth century, even that was proving problematic
 - Data outstripped the Census Bureau’s ability to keep up.

- The 1880 census took 8 years to complete
 - The information was obsolete even before it became available!
- The 1890 census was estimated to require a full 13 years

Use all of the data, or just a little? [5/5]

- The Census Bureau contracted with Herman Hollerith.
 - An American inventor used his idea of punch cards and tabulation machinery for the 1890 census.
 - Reduced duration to less than one year.

- Methods of acquiring and analyzing big data is very expensive.

Now “Big Data” is available

- **Volume**
 - Every day 2.5 Quintillion bytes of data are created
 - 90% of world’s data today was created in the last two years

- **Velocity**
 - Every minute there are
 - 216 Million Instagrams
 - 204,000,000 emails sent
 - 277,000 tweets

- **Variety**
 - 90% of the data is unstructured
 - Tweets, photos, product information, etc.
In 2009 a new flu virus was discovered.

H1N1 virus

• Combines elements of the viruses that causes bird flu and swine flu

• Some projected outbreak to be on the scale of the 1918 Spanish flu that had:
 • Infected half a billion people
 • Killed tens of millions

• No vaccine was ready

• Public health authorities needed to know where it already was.

In the United States,

• The Centers for Disease Control and Prevention (CDC)
 • Requested doctors to inform the CDC about new flu cases
 • Tabulated the numbers once a week

• Typically 1-2 week reporting lag

• What are the problems with this system?

Detecting influenza epidemics using search engine query data

Detecting influenza epidemics using search engine query data (1/2)

 http://www.nature.com/nature/journal/v457/n7232/full/nature07634.html

How did they build a prediction model? (1/3)

• On the spread of seasonal flu between 2003 and 2008
 • Identify areas infected by the flu virus by what people searched for on the Internet

• Aggregating historical logs of online web search queries
 • Between 2003 and 2008
 • Computed a time series of weekly counts for 50 million of the most common search queries in the US
 • Weekly counts were kept for every query in each state

• Simple model that estimates the probability that a random physician visit in a particular region is related to an influenza-like illness (ILI)
How did they build a prediction model? (2/3)

- The probability that a random search query submitted from the same region is ILI-related

\[\text{logit}(I(t)) = \text{logit}(Q(t)) + \epsilon \]

- \(I(t) \) is the percentage of ILI physician visits at time \(t \)
- \(Q(t) \) is the ILI-related query fraction at time \(t \)
- \(\alpha \) is the multiplicative coefficient
- \(\epsilon \) is the error term
- \(\logit(p) = \log(p/(1-p)) \)

Evaluation of combining top-scoring queries

Most co-related queries

<table>
<thead>
<tr>
<th>Search query topic</th>
<th>Top 45 queries</th>
<th>Next 55 queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza complication</td>
<td>9.85</td>
<td>5.54</td>
</tr>
<tr>
<td>Cold/flu remedy</td>
<td>4.34</td>
<td>3.48</td>
</tr>
<tr>
<td>General influenza symptoms</td>
<td>2.60</td>
<td>2.46</td>
</tr>
<tr>
<td>Symptom for influenza</td>
<td>1.87</td>
<td>2.34</td>
</tr>
<tr>
<td>Specific influenza symptoms</td>
<td>2.56</td>
<td>3.74</td>
</tr>
<tr>
<td>Antibiotic medication</td>
<td>2.45</td>
<td>5.46</td>
</tr>
<tr>
<td>Antiviral medication</td>
<td>3.25</td>
<td>7.26</td>
</tr>
<tr>
<td>Influenza-related disease</td>
<td>6.25</td>
<td>5.21</td>
</tr>
<tr>
<td>Influenza-related symptoms</td>
<td>0.21</td>
<td>0.37</td>
</tr>
<tr>
<td>Other-related disease</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>Unrelated to influenza</td>
<td>0.60</td>
<td>0.90</td>
</tr>
<tr>
<td>Total</td>
<td>5.55</td>
<td>5.43</td>
</tr>
</tbody>
</table>

The top 65 queries were used in the final model; the next 55 queries are presented for comparison purposes. The number of queries in each topic is indicated, as well as query-volume weighted counts, reflecting the relative frequency of queries in each topic.

What makes this work innovative?

- There have been other approaches:
 - CDC's weekly report
 - Call volume to telephone triage advice lines
 - Tracking over-the-counter drug sales
 - Online activity for influenza surveillance
 - Search queries submitted to a Swedish medical website
 - Tracking search keys ('flu', or 'influenza') in Yahoo search queries

- **What is the innovation in Google's approach?**

Google processes more than 24 Petabytes of data per day.
Knowledge and Insights

Part 0. Introduction
Course Introduction

Knowledge and Insights

Related research areas
• Storage systems
 - How can we efficiently resolve queries on massive amounts of input data?
 - The input dataset may be presented in the form of a distributed data stream
• Machine learning
 - How can we efficiently solve large-scale machine learning problems?
 - The input data may be massive, stored in a distributed cluster of machines
• Distributed computing
 - How can we efficiently solve large-scale optimization problems in distributed computing environments?
 - For example, how can we efficiently solve large-scale combinatorial problems, e.g., processing of large scale graphs?

Related courses in CS at CSU
• Machine Learning/Statistics (CS480, CS545)
• Distributed Systems (CS455, CS555)
• Database Systems (CS430, CS530)
• Computer Communications (CS457, CS557)
• Computer Security (CS356, CS556)

About me
• Research area
 - Big Data
 - Storage, retrieval, analytics and immersive visual analytics
• Projects
 - Glean
 - Predictive analysis at scale
 - Galileo
 - Distributed data storage system for large scale geospatial time-series datasets
 - Mendel
 - Genomic data storage system
 - Helios
 - Immersive Visual Analytics
 - Graduate and undergraduate research
 - Columbus
 - Cloud-based workflow engine
Communications (1/2)

- Course Website
 - http://www.cs.colostate.edu/~cs435
- Announcements: Check the course website at least twice a week.
- Schedule (course materials, readings, assignments, recitations)
- Policies

- Canvas
 - Assignment submission
 - Grades
- Piazza
 - Discussion

Communications (2/2)

- Contact Instructor
 - sangmi@colostate.edu
- Office hours
 - Friday 10:00AM ~ 11:00AM and by appointment
- Office: CSB456
- URL: http://www.cs.colostate.edu/~sangmi

- Contact GTA
 - Bibek Shrestha
 - Office hours
 - Monday 6:00PM ~ 8:00PM (CSB120)
 - Friday 7:00PM ~ 9:00PM (CSB120)

Course Structure

1. Lectures
2. Assignments
3. Quizzes and Exams
4. Term Projects
5. Help Sessions

Assignments (1/2)

- Providing hands-on experience
- Assignment 0: Set up your Hadoop cluster and a simple example
 - Available on the course web
 - Due on Feb. 5 5PM
- Assignment 1: Large scale data pre-processing using Hadoop MapReduce
- Assignment 2: Large scale data analytics using Hadoop MapReduce
- Assignment 3: Large scale data analytics using Apache Spark
Assignments (2/2)

- All assignments will be individual submissions
- Required programming language: Java
- Grading will be based on demo/interview
- Late submission policy
 - Up to 2 days of late submission is accepted
 - 10% deduction per day will be applied
- Assignment submission
 - Canvas

Quizzes and Exams (1/2)

- Pop quizzes
 - About 10 quizzes this semester
 - Simple questions
 - Each quiz is about ~1% of the course grade
 - 2 lowest scores will be eliminated at the end of the semester
 - Open book, open note
 - No Internet, no collaboration

Quizzes and Exams (2/2)

- Exams
 - Midterm and Final
 - 40% of the course grade
 - Mixture of simple questions and comprehensive questions

Course Structure

- 1. Lectures
- 2. Assignments
- 3. Quizzes and Exams
- 4. Term Projects
- 5. Help Sessions

Term Project

- Comprehensive Big Data Analytics experiences
- Phase 0: Find your teammate!
- Phase 1: Term Project Proposal
- Phase 2: Final submission: Software and Report
- Phase 3: Presentation (Class presentation) and demonstration of your software

- Term project is a team effort 2-3 students per team
 - No single member team allowed!
- http://www.cs.colostate.edu/~cs435/
How do I select my Term Project topic?

1. Do you have a topic in your mind?
 - Yes
 - No

2. Go through the example topics
 - Yes
 - No

3. Did you find an interesting topic?
 - Yes
 - No

4. List your name on the Piazza discussion board with your strengths.
 - Yes
 - No

5. Did you come up with your own topic?
 - Yes
 - No

6. Do you have teammates?
 - Yes
 - No

Example topics from previous courses

- Similarity and Clustering on The Million Song Dataset
- Methods Used to Analyze Eclipse and Mozilla Bug Data
- Movie Recommendations using Collaborative Filtering
- Climate Visualization and Predictive Analysis
- Supporting Emergency Response During Natural Disasters with Twitter Data

Course Structure

1. Lectures
2. Assignments
3. Quizzes and exams
4. Term Projects
5. Help sessions

Grading Policy

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
<th>Percentage of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Assignments</td>
<td>Total: 20</td>
<td></td>
</tr>
<tr>
<td>PA0: 3</td>
<td></td>
<td>30 %</td>
</tr>
<tr>
<td>PA1: 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA2: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term Project</td>
<td>Total: 20</td>
<td></td>
</tr>
<tr>
<td>Phase 0: 1</td>
<td></td>
<td>20 %</td>
</tr>
<tr>
<td>Phase 1: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2: 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quizzes and participation</td>
<td>10</td>
<td>10 %</td>
</tr>
<tr>
<td>Midterm Exams (20% x 2)</td>
<td>Total: 40</td>
<td>40%</td>
</tr>
</tbody>
</table>
Final Letter Grade

Letter grades will be based on the following standard breakpoints

- >= 90 is an A
- >= 89 is an A-
- >= 88 is a B+
- >= 80 is a B
- >= 79 is a B-
- >= 78 is a C+
- >= 70 is a C
- >= 60 is a D
- and <60 is an F

Course Timeline

Course Policy

- No make-up for missed exams
 - Except in extraordinary circumstances (e.g., major illness, family emergency)

- No make-up for missed quizzes
 - Except for the case where there is an emergency

Course Policy

- No Cell-phones in the class.
- If you need to use a laptop, please sit in the back row.
 - I will ask you to turn off your laptop if it seems to be distracting to others.
- No text book.
 - I provide several on-line materials and research papers.
 - Rely on the lecture notes
- Accommodation requirements
 - Week 1 and Week 2

Plagiarism

- We use plagiarism detection software
- Please do not copy code or sentences from your references or your colleague’s work
 - Discuss with each other, but do not write your software together!

More importantly,

- Attend the class, ask questions, and discuss
- Check the course web page, Piazza, and Canvas regularly
- Try new technologies and apply them
- Share your experiences with other students in class
Questions?