PART 1.
LARGE SCALE DATA ANALYSIS USING MAPREDUCE

Instructor: Sangmi Lee Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs435

FAQs

• Discussion board is ready in Canvas
 • Are you looking for teammate(s)? Post your message after the class!
 • Your name
 • Strengths
 • Rough idea about your topic

• Programming Assignment 1
 • Due: Feb. 5
 • Creating Uni-gram, and Bi-gram profile for a Corpus

• Help session: Jan. 21 Friday 11:00 AM – noon CSB130
 • The link to the video clip will be posted on the class web
 • Please try to attend and ask questions!
 • This is not mandatory

This material is developed based on,

• MapReduce Design Patterns, Donald Miner and Adam Shook, O’Reilly, 2013

What is MapReduce?
MapReduce (1/2)

• MapReduce is inspired by the concepts of map and reduce in Lisp.
• Developed within Google as a mechanism for processing large amounts of raw data.
 - Crawled documents or web request logs
 - Distributes these data across thousands of machines
 - Same computations are performed on each CPU with different dataset

MapReduce (2/2)

• MapReduce provides an abstraction that allows engineers to perform simple computations while hiding the details of parallelization, data distribution, load balancing and fault tolerance

Mapper

• Mapper maps input key/value pairs to a set of intermediate key/value pairs
 - Maps are the individual tasks that transform input records into intermediate records
 - The transformed intermediate records do not need to be of the same type as the input records
 - A given input pair may map to zero or many output pairs
 - The Hadoop MapReduce framework spawns one map task for each InputSplit generated by the InputFormat for the job

Reducer

• Reducer reduces a set of intermediate values which share a key to a smaller set of values
• Reducer has 3 primary phases
 - Shuffle, sort and reduce
 - Shuffle
 - Input to the reducer is the sorted output of the mappers
 - The framework fetches the relevant partition of the output of all the mappers via HTTP
 - Sort
 - The framework groups input to the reducer by keys

Example 1: WordCount

• For text files stored under /usr/joe/wordcount/input, count the number of occurrences of each word
• How do files and directory look?

```bash
$ bin/hadoop dfs -ls /usr/joe/wordcount/input
/usr/joe/wordcount/input/file01
/usr/joe/wordcount/input/file02

$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01
Hello World, Bye World!

$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02
Hello Hadoop, Goodbye to hadoop.
```
Example 1: WordCount [2/5]

- Run the MapReduce application

```bash
$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000

Bye 1
Goodbye 1
Hadoop 1
Hello 1
World 1
World 1
to 1
```

Example 1: WordCount [3/5]

Mappers
1. Read a line
2. Tokenize the string
3. Pass the `<key, value>` output to the reducer

Reducers
1. Collect `<key, value>` pairs sharing same key
2. Aggregate total number of occurrences

What do you have to pass from the Mappers?

Example 1: WordCount [4/5]

```java
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context)
    throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
}
```

Example 1: WordCount [5/5]

```java
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce(Text key, Iterable<IntWritable> values, Context context)
    throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
}
```

NCDC data example

- A national climate data center record

```
0057
332130 # USAF weather station identifier
99999 # WMO weather station identifier
19500101 # observation date
99999
0300 # observation time 4
+ 51317 # latitude (degrees x 1000)
+ 0171 # elevation (meters)
320 # wind direction (degrees)
1 # quality code
```

MapReduce Example 2
The first entries for 1990

```
ls raw/ 1990 | head
010010-99999-1990.gz
010014-99999-1990.gz
010015-99999-1990.gz
010016-99999-1990.gz
010017-99999-1990.gz
010030-99999-1990.gz
010040-99999-1990.gz
010080-99999-1990.gz
010100-99999-1990.gz
010150-99999-1990.gz
```

Analyzing the data with Unix Tools (1/2)

```
#!/usr/bin/env bash
for year in all/*
do
  echo -ne `basename $ year .gz`
  gunzip -c $ year |
  awk '{ temp = substr( $0, 88, 5) + 0;
         q = substr( $0, 93, 1);
         if (temp != 9999 && q ~ /[01459]/ && temp > max)
             max = temp }
      END { print max }'
Done
```

Analyzing the data with Unix Tools (2/2)

```
% ./max_temperature.sh
1901 317
1902 244
1903 289
1904 256
1905 283
```

Results?

```
The complete run for the century took 42 minutes
To speed up the processing
  We need to run parts of the program in parallel
  Process different years in different processes
  What will be the problems?
```

Challenges

```
- Dividing the work into equal-size pieces
- Data size per year?
- Combining the results from independent processes
  - Combining results and sorting by year?
- You are still limited by the processing capacity of a single machine (the worst one!)
```

Map and Reduce

```
- MapReduce works by breaking the processing into two phases
  - The map phase
  - The reduce phase
- Each phase has key-value pairs as input and output
- Programmers should specify
  - Types of input/output key-values
  - The map function
  - The reduce function
```
Visualizing the way the MapReduce works (1/3)

Sample lines of input data:

- \((0, 0067011990999991950051507004... + 0001)\)
- \((106, 0043011990999991950051512004... + 0022)\)
- \((212, 0043011990999991950051518004... - 0011)\)
- \((1949, 111)\)
- \((1950, 22)\)
- \((1950, -11)\)
- \((1949, 78)\)

These lines are presented to the map function as the key-value pairs:

- \((0, 0067011990999991950051507004... + 0001)\)
- \((106, 0043011990999991950051512004... + 0022)\)
- \((212, 0043011990999991950051518004... - 0011)\)
- \((1949, 111)\)
- \((1950, 22)\)
- \((1950, -11)\)
- \((1949, 78)\)

These keys are the line offsets within the file.

Visualizing the way the MapReduce works (2/3)

The map function extracts the year and the air temperature and emit them as its output:

- \((1949, 111)\)
- \((1950, 22)\)
- \((1950, -11)\)
- \((1949, 78)\)

This output key-value pairs will be sorted and grouped by key. Our reduce function will see the following input:

- \((1949, [111, 78])\)
- \((1950, [0, 22, -11])\)

Reduce function iterates through the list and pick up the maximum reading:

- \((1949, 111)\)
- \((1950, 22)\)

This is the final output.

Visualizing the way the MapReduce works (3/3)

Comparison with other systems

- MPI vs. MapReduce
 - MapReduce tries to collocate the data with the compute node
 - Data access is fast
 - Data is local!
- Volunteer computing vs. MapReduce
 - SETI@home
 - Using donated CPU time

MapReduce Example 3

Dataset

- Link information in \(n\) log files

- There are two attributes
 - From and To
 - \((IP1, IP2)\): There was a link from IP1 to IP2
Relational-Algebra style queries [1/5]

- Large relation can be stored as a file in a DFS (Distributed File System)
 - We will discuss DFS next class
- The data queries (e.g. SQL style) can be processed without storing dataset in a SQL database using MapReduce
 - Selection
 - Apply a condition \(C \) to each record in the relation and provide as output only those records that satisfy \(C \)

```
<table>
<thead>
<tr>
<th>IP 1</th>
<th>IP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>220.4.5.20</td>
<td>160.33.1.3</td>
</tr>
<tr>
<td>220.4.5.20</td>
<td>100.33.1.5</td>
</tr>
<tr>
<td>160.33.1.3</td>
<td>79.45.66.9</td>
</tr>
<tr>
<td>160.33.1.3</td>
<td>100.33.1.5</td>
</tr>
<tr>
<td>100.33.1.5</td>
<td>79.45.66.9</td>
</tr>
</tbody>
</table>
```

Select * where “the source is 220.4.5.20”

Relational-Algebra style queries [2/5]

- Projection
 - Produces partial record from each record that contains only selected attributes
- Union/Intersection and Difference
 - Set operations

```
<table>
<thead>
<tr>
<th>IP 1</th>
<th>IP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>220.4.5.20</td>
<td>160.33.1.3</td>
</tr>
<tr>
<td>220.4.5.20</td>
<td>100.33.1.5</td>
</tr>
<tr>
<td>160.33.1.3</td>
<td>79.45.66.9</td>
</tr>
<tr>
<td>160.33.1.3</td>
<td>100.33.1.5</td>
</tr>
<tr>
<td>100.33.1.5</td>
<td>79.45.66.9</td>
</tr>
</tbody>
</table>
```

Select “source” from this file

Relational-Algebra style queries [3/5]

- Union/Intersection and Difference
- Set operations

```
<table>
<thead>
<tr>
<th>IP 1</th>
<th>IP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.42.15.2</td>
<td>160.33.1.3</td>
</tr>
<tr>
<td>220.4.5.21</td>
<td>100.33.1.5</td>
</tr>
<tr>
<td>160.33.1.30</td>
<td>79.45.66.9</td>
</tr>
<tr>
<td>100.33.1.5</td>
<td>79.45.66.9</td>
</tr>
</tbody>
</table>
```

Join

Data File 1

Data File 2

Join Data File 1 and Data File 2 on timestamp

Relational-Algebra style queries [4/5]

- Natural Join
 - Given two datasets, compare each pair of records from each dataset
 - If the records agree on all the attributes that are common between schemas, then produce a new record that has all of the attributes in either schema

```
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb.02.2016-12:00:01 121.42.15.2</td>
<td>slpallickara</td>
</tr>
<tr>
<td>Feb.02.2016-12:00:19 220.4.5.21</td>
<td>jscott</td>
</tr>
<tr>
<td>Feb.02.2016-12:01:22 160.33.1.30</td>
<td>slpallickara</td>
</tr>
<tr>
<td>Feb.02.2016-12:02:11 100.33.1.5</td>
<td>jscott</td>
</tr>
</tbody>
</table>
```

Relational-Algebra style queries [5/5]

- Grouping and Aggregation
 - Grouping
 - Given a dataset \(R \), partition its records according to their values in one set of attributes \(G \)
 - Aggregation
 - Then for each group, aggregate the values
 - SUM, COUNT, AVG, MIN and MAX

Computing Selections by MapReduce

Map function

Reduce function

For the shuffled pairs \(\{ t_1, t_2, \ldots, t \} \)

Returns \(\{ t \} \) as the result of eliminating duplications
Computing Selections by MapReduce - continued
- The Map function
 - For each record \(t \) in dataset \(A \), test if it satisfies \(C \). If so, produce the key-value pair \((t,t)\)
 - Both of the key and values are \(t \)
- The Reduce function
 - It simply passes each key-value pair to the output

Computing Projections by MapReduce
- The Map function
 - For each record \(t \) in Dataset \(A \), construct a record \(t' \) by eliminating all of the attributes those are not needed
 - Output the key-value pair \((t', t')\)
- The Reduce function
 - For each key \(t' \) produced by any of the Map tasks, there will be one or more key-value pairs \((t', t')\)
 - Eliminate duplicates
 - \((t', t', t', t', \ldots t') \rightarrow (t', t')\)

Computing Union by MapReduce
- The Map function
 - Turn each input record \(t \) into a key-value pair \((t, t)\)
- The Reduce function
 - Associated with each key \(t \) there will be either one or two values
 - For the shuffled pairs \((t, t, t, \ldots t)\)
 - Returns \((t, t)\) as the result of eliminating duplications
Computing Intersection by MapReduce

- The Map function
 - Turn each record t into a key-value pair (t,t)

- The Reduce function
 - If key t has another value list $[t,t]$, then produce (t,t)
 - Otherwise nothing

Computing aggregation

- Get the total count of connections per source IP address
- Use your worksheet
- Design your map and reduce

Computing Difference by MapReduce

- Difference between dataset A and dataset B
 - “How A is different from B”
 - The only way to record t can appear in the output is if it is in dataset A but not in Dataset B

Computing natural join by MapReduce

- Joining dataset A and dataset B
 - Dataset A has attributes A1, A2, and A3
 - Dataset B has attributes A3, A4, and A5
 - We must find records that agree on their A3 attributes
 - The third attribute from the dataset A and the first attribute of dataset B
Example 4: Implementation of Natural Join using MapReduce (3/2)

Map function
- For each record (A1, A2, A3) in dataset A, produce the key-value pair (A3, (“A”, (A1, A2)))
- For each record (A3, A4, A5) in dataset B, produce the key-value pair (A3, (“B”, (A4, A5)))

Reduce function
- For all of the pairs with same key:
 - Construct all pairs consisting of one from dataset A and the other from dataset B: (A3, (“A”, (A1, A2))) and (A3, (“B”, (A4, A5)))
 - Merge the record and return the value
- (A1, A2, A3, A4, A5)

Questions?