FAQs

- Term project
 - 5:00PM March 29, 2018
- PA2
 - Recitation: Friday
- No office hour on Friday (10-11AM)

Today’s topics

- Recommendation Systems
 - Collaborative Filtering
 - Amazon’s Item-to-Item CF
- Evaluation/Validation Techniques

Collaborative filtering

- Focus on the similarity of the user ratings for items
- Users are similar if their vectors are close according to some distance measure
 - E.g. Jaccard or cosine distance
- Collaborative filtering
 - The process of identifying similar users and recommending what similar users like
Measuring similarity
• How to measure similarity of users or items from their rows or columns in the utility matrix?
 • Jaccard Similarity for A and B: 1/5
 • Jaccard Similarity for A and C: 2/4
• For user A, user C might have similar opinion than user B
• Can user C provide a prediction for A?

<table>
<thead>
<tr>
<th>User</th>
<th>HP1</th>
<th>HP2</th>
<th>HP3</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Cosine similarity (1/2)
• We can treat blanks as 0 values
• The cosine of the angle between A and B is
\[
\cos \alpha = \frac{HP1 \times 5 + HP2 \times 5 + HP3 \times 5 + SW1 \times 1 + SW2 \times 3 + SW3 \times 3}{\sqrt{HP1^2 + HP2^2 + HP3^2 + SW1^2 + SW2^2 + SW3^2}} = 0.380
\]

<table>
<thead>
<tr>
<th>User</th>
<th>HP1</th>
<th>HP2</th>
<th>HP3</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Cosine similarity (2/2)
• A is slightly closer to B than to C
• A and C are much further apart than A and B.
• Neither pair is very close

Normalizing ratings (1/2)
• What if we normalize ratings by subtracting from each rating the average rating of that user?
• Some rating (very low) will turn into negative numbers
• If we take the cosine distance, the opposite views of the movies will have vectors in almost opposite directions
 • It can be as far apart as possible

Normalizing ratings (2/2)
• The cosine of the angle between A and B
\[
\cos \alpha = \frac{(2/3)x(2/3) + (5/3)x(5/3) + (7/3)x(7/3) + (1/3)x(1/3) + (2/3) x (2/3)}{\sqrt{(2/3)^2 + (5/3)^2 + (7/3)^2 + (1/3)^2 + (2/3)^2}} = 0.092
\]

<table>
<thead>
<tr>
<th>User</th>
<th>HP1</th>
<th>HP2</th>
<th>HP3</th>
<th>TW</th>
<th>SW1</th>
<th>SW2</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>B</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>C</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>D</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>
Computational complexity

- Worst case
 - $O(MN)$ where M is the number of customers and N is the number of product catalog items
 - It examines M customers and up to N items for each customer

Computational complexity (1/3)

- The average customer vector is extremely sparse!
 - The algorithm's performance tends to be closer to $O(M+N)$
 - Scanning every customer
 - $O(M)$ not $O(MN)$
 - Almost every customer has very small N
 - Few customers who have purchased or rated a significant percentage of items
 - Requires $O(N)$
 - 10 million customers and 1 million items?

Computational complexity (2/3)

- We can reduce M by:
 - Randomly sampling the customers
 - Discarding customers with few purchases

- We can reduce N by:
 - Discarding very popular or unpopular items
 - Partitioning the item space based on the product category or subject classification

Computational complexity (3/3)

- Dimensionality reduction techniques can reduce M or N by a large factor
 - Clustering
 - Principal component analysis

Disadvantage of space reduction

- Reduced recommendation quality
 - Sampled customer
 - More similar customers will be dropped
 - Item-space partitioning
 - It will restrict recommendations to a specific product or subject area
 - Discarding most popular or unpopular items
 - They will never appear as recommendations

Large Scale Data Analytics

4. Recommendation Systems

Amazon.com: Item-to-item collaborative filtering
This material is built based on,

- Greg Linden, Brent Smith, and Jeremy York, "Amazon.com Recommendations, Item-to-Item Collaborative Filtering" IEEE Internet Computing, 2003

Amazon.com uses recommendations as a targeted marketing tool
- Email campaigns
- Most of their web pages

Item-to-item collaborative filtering

- It does NOT match the user to similar customers
- Item-to-item collaborative filtering
 - Matches each of the user's purchased and rated items to similar items
 - Combines those similar items into a recommendation list

Determining the most-similar match

- The algorithm builds a similar-items table
 - By finding items that customers tend to purchase together
- How about building a product-to-product matrix by iterating through all item pairs and computing a similarity metric for each pair?
 - Many product pairs have no common customer
 - If you already bought a TV today, will you buy another TV again today?

Co-occurrence in a product-to-product matrix

- Suppose that there are 4 users A, B, C, D, and E with 5 products P1, P2, P3, P4, and P5
 - A purchased P1, P2, P3
 - B purchased P2, P3, P5
 - C purchased P3, P4
 - D purchased P2, P4

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>p4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Similarity product-to-product matrix

- Similarity between products
 - P1: T-shirt
 - P2: video cable
 - P3: projector
 - P4: tv
 - P5: smart tv

- Assume that,
 - Similarity (P1, P2) = 0.001
 - Similarity (P1, P3) = 0.001
 - Similarity (P1, P4) = 0.001
 - Similarity (P1, P5) = 0.001
 - Similarity (P2, P3) = 0.013
 - Similarity (P2, P4) = 0.022
 - Similarity (P2, P5) = 0.022
 - Similarity (P3, P4) = 0.26
 - Similarity (P3, P5) = 0.26
 - Similarity (P4, P5) = 0.72

Computing similarity

- Using cosine measure
 - Each vector corresponds to an item rather than a customer
 - M dimensions correspond to customers who have purchased that item

Creating a similarity product-to-product table

- Calculating the similarity between a single product and all related products:

 For each item in product catalog, I1
 - For each customer C who purchased I1
 - For each item I2 purchased by customer C
 - Record that a customer purchased I1 and I2
 - For each item I1
 - Compute the similarity between I1 and I2

Scalability (1/2)

- Amazon.com has around 300 million customers and more than 562,382,292 cataloged items
- Traditional collaborative filtering does little or no offline computation
- Online computation scales with the number of customers and catalog items.

Scalability (2/2)

- Cluster models can perform much of the computation offline
 - Recommendation quality is relatively poor
- Content-based model
 - It cannot provide recommendations with interesting, targeted titles
 - Not scalable for customers with numerous purchases and ratings
Key scalability strategy for Amazon recommendations

- Creating the expensive similar-items table offline
- Online component
 - Looking up similar items for the user's purchases and ratings
 - Scales independently of the catalog size or the total number of customers
- It is dependent only on how many titles the user has purchased or rated

Recommendation quality

- The algorithm recommends highly correlated similar items
 - Recommendation quality is excellent
 - Algorithm performs well with limited user data

Why evaluation/validation?

1/2

- Process for model selection and performance estimation
- Model selection (fitting the model)
 - Most of the models have one or more free parameters
 - $h(x) = \theta_0 + \theta_1 x_1$
 - We need to choose values to generate (fit) your model
 - How do we select the "optimal" parameter(s) or model for a given classification problem/predictive analytics?

Why evaluation/validation?

2/2

- Performance estimation
 - Once we have chosen a model, how do we estimate its performance (accuracy)?
- Performance is typically measured by the true error rate
 - e.g. the classifier's error rate on the entire population

Challenges

1/2

- If we had access to an unlimited number of examples these questions have a straightforward answer
 - Choose the model that provides the lowest error rate on the entire population
 - Of course, that error rate is the true error rate
- In real applications we only have access to a subset of examples, usually smaller than we wanted
 - What if we use the entire available data to fit our model and estimate the error rate?
 - The final model will normally overfit the training data
 - We already used the test dataset to train the data
Challenges (2/2)

- This problem is more pronounced with models that have a large number of parameters
 - The error rate estimate will be overly optimistic (lower than the true error rate)
 - In fact, it is not uncommon to have 100% correct classification on training data

- A much better approach is to split the training data into disjoint subsets: the holdout method

The Holdout Method

- Split dataset into two groups
 - Training set
 - Used to train the model
 - Test set
 - Used to estimate the error rate of the trained model

- Simplest cross validation method

Drawbacks of the holdout method

- Drawbacks
 - For a sparse dataset, we may not be able to set aside a portion of the dataset for testing
 - Based on the where “split” happens, the estimate of error can be misleading
 - Sample might not be representative

- The limitations of the holdout can be overcome with a family of resampling methods
 - More computational expense
 - Stratified sampling
 - Cross Validation
 - Random subsampling
 - K-fold cross validation
 - Leave-one-out Cross Validation

Random Subsampling

- K data splits of the dataset
 - Each split randomly selects a (fixed) number of examples without replacement
 - For each data split, retain the classifier from scratch with the training examples and estimate E_i with the test examples
True Error Estimate

• The true error estimate is obtained as the average of the separate estimates E_i

• This estimate is significantly better than the holdout estimate

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

k-Fold Cross-validation

• Create a k-fold partition of the dataset
 • For each of the k experiments use $K-1$ folds for training
 • The remaining one for testing

<table>
<thead>
<tr>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
<th>Experiment 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test example</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test example</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test example</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test example</td>
</tr>
</tbody>
</table>

Total number of examples

True Error Estimate

• k-fold cross validation is similar to random subsampling
 • The true error is estimated as the average error rate

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

k-Fold Cross-validation

• Leave-one-out is the degenerate case of k-Fold Cross validation
 • k is chosen as the total number of examples
 • For a dataset with N examples, perform N experiments
 • Use $N-1$ examples for training, the remaining example for testing

Leave-one-out Cross Validation

<table>
<thead>
<tr>
<th>Experiment 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Experiment 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Experiment N</td>
</tr>
</tbody>
</table>

Total number of examples

Large Scale Data Analytics

5. Evaluation and Validation

3. k-Fold Cross-validation

4. Leave-one-out Cross-validation
How many folds are needed?

- The choice of the number of folds depends on the size of the dataset
 - For large datasets, even 3-Fold Cross Validation will be quite accurate
 - For very sparse datasets, you may have to consider leave-one-out
 - To get maximum number of experiments

- A common choice for k-fold Cross Validation is $k=10$

Three-way data splits

- If model selection and true error estimates are computed simultaneously
 - The data needs to be divided into three disjoint sets
 - Training set
 - Validation set
 - Test set
 - A set of examples used to tune the parameters of a model
 - To find the “optimal” number of hidden units or determine a stopping point for the back propagation algorithm
 - Used only to assess the performance of a fully trained model

- After assessing the final model with the test set, you must not further tune the model

Plain Accuracy

- Classifier accuracy
 - General measure of classifier performance

Accuracy = \frac{\text{Number of correct decisions made}}{\text{Total number of decision made}}

- Pros
 - Very easy to measure
- Cons
 - Cannot consider realistic cases

The Confusion Matrix

- A type of contingency table
 - n classes
 - $n \times n$ matrix
 - The columns labeled with actual classes
 - The rows with predicted classes
 - Separates out the decisions made by the classifier
 - How one class is being confused for another
 - Different sorts of errors may be dealt with separately

<table>
<thead>
<tr>
<th></th>
<th>p (predicted)</th>
<th>n (negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p (true positive)</td>
<td>True positive</td>
<td>False negative</td>
</tr>
<tr>
<td>n (false negative)</td>
<td>False positive</td>
<td>True negative</td>
</tr>
</tbody>
</table>
Problems with Unbalanced Classes

- Consider a classification problem where one class is rare
 - Sifting through a large population of normal entities to find a relatively small number of unusual ones
 - Looking for defrauded customers, or defective parts
 - The class distribution is unbalanced or skewed

Why accuracy is misleading

F-measure (F1 score)

- Summarizes confusion matrix
- True positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN)
- True positive rate (sensitivity) = TP/(TP+FN)
- False negative rate (miss rate) = FN/(TP+FN)
- F-measure = 2(precision x recall)/(precision + recall)
 - precision = TP / (TP+FP)
 - recall = TP / (TP+FN)
- Accuracy = (TP + TN) / (P + N)