FAQs

- PAD has been posted
 - Feb. 6, 5:00PM via Canvas
 - Individual submission (No team submission)

- Accommodation request, honor student
 - Contact me by Jan 26 2018

- Readings
 - Reading research papers
 - Keshav’s "How to read a paper"
 - "How to Read and Understand a Scientific Paper: A Step-by-Step Guide for Non-Scientists"

Topics

- Introduction to Big Data Analytics
- Data Collection, Sampling, and Preprocessing
- Introduction to MapReduce

This Material is Built Based on,

Analytics Process Model

The most time-consuming step is the data selection and preprocessing step.
- This is usually around 80% of the total time needed to build an analytical model.
Types of Analytics

• Analytics is a term that is often used interchangeably with
 • Data science
 • Data mining
 • Knowledge discovery

• Predictive analytics
 • A target variable is typically available
 • E.g. linear/logistic regression, decision trees, neural networks, support vector machines

• Descriptive analytics
 • No target variable
 • E.g. Clustering, association rules

Types of Data Sources

• Transactions
 • Structured, low-level, detailed information
 • Customer transactions
 • Purchase, time, amount, location
 • Stored in massive online transaction processing (MOLAP) relational database
 • Can be summarized over longer time horizons (e.g., averages, relative trends, Max/Min values)

• Unstructured data embedded in text documents
 • E.g., emails, web pages, claims forms
 • Requires extensive preprocessing

• Qualitative, expert-based data
 • Requires subject matter experts’ (SME) analysis
 • Scientific data

Types of Data Elements

• Continuous
 • Data elements that are defined on an interval that can be limited or unlimited
 • E.g., income, color, temperature

• Categorical Nominal
 • Data elements that can only take on a limited set of values with no meaningful ordering between them
 • E.g., marital status, profession, purpose of loan

• Ordinal
 • Data elements that can only take on a limited set of values with a meaningful ordering between them
 • E.g., credit rating, age coded as young, middle age and old

• Binary
 • Data elements that can only take on two values
 • E.g., having child, allowed to drive

Sampling

• Taking a subset of data for analytics
 • Generating hypothesis
 • Model selection
 • Feature selection
 • Speculative process
 • Building analytics model

• Stratified sampling
 • Taking samples according to predefined strata
 • E.g., Fraud detection with very skewed (99 percent non-fraud customers, 1 percent fraud customers)
 • Sample should contain the same percentage of fraud customers as in the original data

Missing Values

• Missing values can occur because of various reasons
 • The information can be non-applicable
 • The information can be undisclosed
 • The information can be unavailable

• Replace (impute)
 • Replaces the missing value with a computed/selected value
 • Hot deck: replaces with a randomly selected similar records
 • Co-occurrence: replaces with the mean of that variable for all other cases
 • Regression: predicts missing values of a variable based on other variables.

• Delete
 • Deletes observations with lots of missing values
 • This assumes that information is missing at random and has no meaningful interpretation and/or relationship to the target

• Keep
 • Missing values can be meaningful
 • E.g., a customer did not disclose the income for current condition
Outliers of Dataset

- **Outliers** are extreme observations that are very dissimilar to the rest of the population
 - Valid observation
 - Invalid observation
 - Age = 100

- **Multivariate outliers**
 - Observations that are outlying in multiple dimensions
 - e.g. Temperature in Fort Collins is 100 degrees but on a midnight in December

Identifying Outliers using Box Plots

- A box plot represents three key quartiles of the data
 - Q1: 25% of the observations have a lower value
 - Q2: 50% of the observations have a lower value
 - Q3: 75% of the observations have a lower value
 - The minimum and maximum values are added

- Too far away is now quantified as more than 1.5 x Interquartile Range
 \[
 |X| > 1.5 \times \text{IQR}
 \]

Dealing with Outliers

- Treat outliers as missing values
- Popular schemes
 - Truncation
 - Taking only values that are within the limits
 - Winsorizing
 - Limiting extreme values to reduce the effect of possible spurious outliers

\[
\text{Winsorizing} = \begin{cases}
\text{min} & \text{if } X < \text{min} \\
\text{max} & \text{if } X > \text{max} \end{cases}
\]

Identifying Outliers using Z-Score

- Measuring how many standard deviations an observation is away from the mean
 \[
 z = \frac{X - \mu}{\sigma}
 \]
 where \(\mu \) represents the average of the variable and \(\sigma \) its standard deviation

- A practical rule of thumb then defines outliers when the absolute value of the z-score \(|z| \) is bigger than 3

Standardizing Data

- Scaling variables to a similar range
 - e.g. two variables: education and income
 - Elementary school (1), middle school (2), high school (3), college (4), graduate school (5)
 - Income: 0 ~ $5M
 - When building logistic regression models, the coefficient for education might become very small.

- Min/Max standardization
 \[
 X_{\text{new}} = \frac{X - \min(X)}{\max(X) - \min(X)} + \text{new}
 \]
 where \(\text{newmax} \) and \(\text{newmin} \) are the newly imposed maximum and minimum (e.g. 1 and 0)

- Z-Score based
 - Calculate the z-scores

- Decimal scaling
 \[
 X_{\text{new}} = \frac{X}{10^n}
 \]
 - Dividing by a power of 10

- Standardization is useful for regression-based approaches
 - It is not needed for decision trees
Part 0. Introduction
Big Data Analytics
-Big Data Technology Stack

In a nutshell

Data Layer
Apache HDFS, Amazon AWS’s S3, IBM GPFS, Microsoft Azure

Data Processing Layer
Apache Hadoop MapReduce, Pig, Apache Storm, Cassandra, Mahout, MLlib

Operations and Scheduling Layer
Apache Ambari, Apache Oozie, Apache Zookeeper

Data Integration Layer
Apache Flume, Apache Kafka, Apache Sqoop

Data Presentation Layer
Apache HIVE, Apache Oozie, Apache Sqoop

Security and Governance

Part 1. Large Scale Data Analytics
Introduction to MapReduce

This material is developed based on,
 - Download this chapter from the CS435 schedule page
- MapReduce Design Patterns, Donald Miner and Adam Shook, O’Reilly, 2013

What is MapReduce?
MapReduce

- **MapReduce** is inspired by the concepts of map and reduce in Lisp.

 - "Modern" MapReduce
 - Developed within Google as a mechanism for processing large amounts of raw data.
 - Crawled documents or web request logs
 - Distributes these data across thousands of machines
 - Same computations are performed on each CPU with different dataset

Mapper

- **Mapper** maps input key/value pairs to a set of intermediate key/value pairs
 - Maps are the individual tasks that transform input records into intermediate records
 - The transformed intermediate records do not need to be of the same type as the input records
 - A given input pair may map to zero or many output pairs
 - The Hadoop MapReduce framework spawns one map task for each InputSplit for the job

Reducer

- **Reducer** reduces a set of intermediate values which share a key to a smaller set of values
 - Reducer has 3 primary phases
 - **Shuffle**, sort and reduce
 - **Shuffle**
 - Input to the reducer is the sorted output of the mappers
 - The framework fetches the relevant partition of the output of all the mappers via HTTP
 - **Sort**
 - The framework groups input to the reducer by keys

Example 1: WordCount

- For text files stored under `usr/joe/wordcount/input`, count the number of occurrences of each word
- How do files and directory look?

```bash
$ bin/hadoop dfs -ls /user/joe/wordcount/input/
/user/joe/wordcount/input/file01
/user/joe/wordcount/input/file02
$ bin/hadoop dfs -cat /user/joe/wordcount/input/file01
Hello World, Bye World!
$ bin/hadoop dfs -cat /user/joe/wordcount/input/file02
Hello Hadoop, Goodbye to hadoop.
```
Example 1: WordCount

• Run the MapReduce application

```
$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
/usr/joe/wordcount/input /usr/joe/wordcount/output
```

```
1/22/2018
$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
```

```
Bye 1
Goodbye 1
Hello 2
World! 1
World, 1
hadoop 1
to 1
```

Example 1: WordCount

Mappers
1. Read a line
2. Tokenize the string
3. Pass the <key,value> output to the reducer

Reducers
1. Collect <key,value> pairs sharing same key
2. Aggregate total number of occurrences

What do you have to pass from the Mappers?

```
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
}
```

```
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
}
```

Questions?