No Cell-phones in the class.

If you need to use a laptop, please sit in the back row. I will ask you to turn off your laptop if it seems to be distracting to others.

FAQs

• Why do we need to “shuffle” for the MapReduce jobs?
 • P.A.O
 • Aug. 31, 5:00PM via Canvas
 • If you are not assigned the "port range", contact GTA immediately
 • Team for term project
 • 3-4 members
 • Aug. 30 (TOMORROW), 5:00PM via Canvas
 • Looking for team members? Post your advertisement on Piazza!

Topics covered in this lecture

• MapReduce Design Pattern II. Filtering Patterns

This material is built based on,

• MapReduce Design Patterns
 • Building Effective Algorithms and Analytics for Hadoop and Other Systems
 • By Donald Miner, Adam Shook
 • November, 2012

Filtering pattern

• Providing an abstract of existing data

• Many data filtering do NOT require the "c-reduce" part of MapReduce
 • It does not produce an aggregation

• Known uses
 • Tracking a thread of events
 • Distributed grep
 • Data cleaning
 • Close view of data
 • Simple random sampling
 • Removing low scoring data
Filtering patterns covered in this class

1. Simple Random Sampling
2. Bloom filter
3. Distinct

Filtering Pattern 1: Simple Random Sampling

- Each record has an equal probability of being selected
- Useful for sizing down a data set
- For representative analysis

The structure of the simple filter pattern

To manage the mapreduce jobs without Reducer (Map-only jobs):
1. You can declare job.setNumReduceTasks(0);
2. You can use IdentityReducer

If you set the number of reduce tasks as 0, there will be no sorting and shuffling. IdentityReducer will still do sorting and shuffling.

Writing a Simple Random Sampling filter

```java
public static class SRSMapper extends Mapper<Object, Text, NullWritable, Text> {
    private Random rands = new Random();
    private Double percentage;

    protected void setup(Context context) throws IOException, InterruptedException {
        // Retrieve the percentage that is passed in via the configuration
        // like this:
        conf.set("filter_percentage", .5);
        // for .5%
        String strPercentage = context.getConfiguration().get("filter_percentage");
        percentage = Double.parseDouble(strPercentage) / 100.0;
    }

    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        if (rands.nextDouble() < percentage) {
            context.write(NullWritable.get(), value);
            // otherwise, drop it.
        }
    }
}
```

Stratified Sampling with MapReduce

- Implementing the Stratified Sampling
- Proportion allocation
 - The size of portion in each stratum is taken in proportion to the size of the stratum
 - e.g. Sampling from Olympic athletes
 - With two strata, women and men participants
Stratified Sampling with MapReduce

- Implementing the Stratified Sampling
 - Proportion allocation
 - The size of portion in each stratum is taken in proportion to the size of the stratum
 - e.g. Sampling from Olympic athletes
 - With two strata, women and men participants
 1. Create the strata
 2. A stratum is made of elements belonging to the same class
 3. Apply Simple Random sampling to each stratum

MapReduce Design Patterns II: Filtering Patterns

2. Top 10 (Top K)

Filtering Pattern 2. Top 10

- Retrieves a relatively small number (top K) of records, according to a ranking scheme in your dataset, no matter how large the data

- Known uses
 - Outlier analysis
 - Selecting interesting data
 - Data summarization
 - Catchy dashboards

The structure of Top 10 pattern

Mapper [1/2]

```java
public static class TopTenMapper extends Mapper<Object, Text, NullWritable, Text> {
    private TreeMap<Integer, Text> repToRecordMap = new TreeMap<Integer, Text>();
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        Map<String, String> parsed = transformXmlToMap(value.toString());
        String userId = parsed.get("Id");
        String reputation = parsed.get("Reputation");
        // Add this record to our map with the reputation as the key
        repToRecordMap.put(Integer.parseInt(reputation), new Text(value));
        // If we have more than ten records, remove the one with the lowest rep
        // As this tree map is sorted in descending order, the user with
        // the lowest reputation is the last key.
        if (repToRecordMap.size() > 10) {
            repToRecordMap.remove(repToRecordMap.firstKey());
        }
    }
}
```
Mapper

```java
protected void cleanup(Context context)
    throws IOException, InterruptedException {
    // Output our ten records to the reducers with a null key
    for (Text t : repToRecordMap.values()) {
        context.write(NullWritable.get(), t);
    }
}
```

Reducer

```java
public static class TopTenReducer extends Reducer<NullWritable, Text, NullWritable, Text> {
    private TreeMap<Integer, Text> repToRecordMap = new TreeMap<Integer, Text>();
    public void reduce(NullWritable key, Iterable<Text> values, Context context)
        throws IOException, InterruptedException {
        for (Text value : values) {
            Map<String, String> parsed = transformXmlToMap(value.toString());
            repToRecordMap.put(Integer.parseInt(parsed.get("Reputation")), new Text(value));
            // If we have more than ten records, remove the one with the lowest rep
            // As this tree map is sorted in descending order, the user with the lowest reputation is the last key.
            if (repToRecordMap.size() > 10) {
                repToRecordMap.remove(repToRecordMap.firstKey());
            }
        }
        for (Text t : repToRecordMap.descendingMap().values()) {
            // Output our ten records to the file system with a null key
            context.write(NullWritable.get(), t);
        }
    }
}
```

NullWritable is a special type of Writable. It has a zero-length serialization.

Reducer code

```java
public static class DistinctUserReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
    public void reduce(Text key, Iterable<NullWritable> values, Context context)
        throws IOException, InterruptedException {
        // Write the user's id with a null value
        context.write(key, NullWritable.get());
    }
}
```

Filtering Pattern 3: Bloom Filter

- Checking the membership of a set
- Known uses
 - Removing most of the non-membership values
 - Prefiltering a data set for an expensive set membership check

What is a Bloom Filter?

- Burton Howard Bloom in 1970
- Probabilistic data structure used to test whether a member is an element of a set
- Strong space advantage
Building a Bloom filter

- **m**: The number of bits in the filter
- **n**: The number of members in the set
- **p**: The desired false positive rate
- **k**: The number of different hash functions used to map some element to one of the m bits with a uniform random distribution

Building a Bloom filter

- **m = 8**
- **n = 3** target set T = {5, 10, 15}
- **k = 3**
 - **h1(x) = 3x mod 8**
 - **h2(x) = (2x + 3) mod 8**
 - **h3(x) = x mod 8**

Building a Bloom filter

- **m = 8**
- **n = 3** target set T = {5, 10, 15}
- **k = 3**
 - **h1(x) = 3x mod 8**
 - **h2(x) = (2x + 3) mod 8**
 - **h3(x) = x mod 8**

Applying a Bloom filter

- Is 5 part of set T? If yes, show how to check if 5 is probably a part of set T.
Applying a Bloom filter

- Is 8 part of set \(T \)?
 - \(h_1(8), h_2(8), h_3(8) \)
 - 8 is NOT a part of set \(T \)

\(h_1(8) = 7 \)	0	1	1	1	0	1	0
\(h_2(8) = 4 \)	1	1	0	0	0	0	1
\(h_3(8) = 0 \)	1	0	0	1	1	0	0

Check \(h_1(8) = 0 \)
Check \(h_2(8) = 3 \)
Check \(h_3(8) = 1 \)

After encoding 5, 10 and 15

Applying a Bloom filter

- Is 9 part of set \(T \)?
 - \(h_1(9), h_2(9), h_3(9) \)
 - 9 is NOT a part of set \(T \)

\(h_1(9) = 3 \)	1	0	0	1	0	0	1
\(h_2(9) = 5 \)	1	1	0	0	1	0	1
\(h_3(9) = 1 \)	1	0	0	1	1	0	0

After encoding 5, 10 and 15

Applying a Bloom filter

- Is 7 part of set \(T \)?
 - \(h_1(7), h_2(7), h_3(7) \)th bits are 1
 - 7 is probably a part of set \(T \)

\(h_1(7) = 7 \)	1	0	0	1	0	0	1
\(h_2(7) = 1 \)	1	1	0	0	1	0	1
\(h_3(7) = 7 \)	1	0	0	1	1	0	0

After encoding 5, 10 and 15

Hash functions

- A Hash functions
 - Uniform random distribution in \([1..m)\]
- Cryptographic hash functions
 - MD5, SHA-1, SHA-256, Tiger, Whirlpool
- Must satisfy cryptographic hash function properties
 - Preimage resistance
 - For a random value \(h \) chosen by an honest party, it's very costly for an attacker to find any value \(m \) such that \(\text{hash}(m) = h \)
 - Second-preimage resistance
 - For a random value \(m_1 \) chosen by an honest party, it's very costly for an attacker to find any value \(m_2 \neq m_1 \) such that \(\text{hash}(m_1) = \text{hash}(m_2) \)
 - Collision resistance
 - It's very costly for an attacker to find any pair of values \(m_1 \neq m_2 \) such that \(\text{hash}(m_1) = \text{hash}(m_2) \)
- Murmur Hashes (non-cryptographic), Jenkins, Java hashCode(), Spooky, Cityhash

Avalanche Effect

- Each bit should have 50% chances to change if you change 1 bit of the input
- Avalanche Diagram
 - A grid such that the \((x,y)\) cell's color represents the probability that flipping \(x \)th bit of input will result of \(y \)th bit being flipped in the output (Black: 0%, red: 100%)

Perfect bit independence

Avalanche Effect

- Each bit should have 50% chances to change if you change 1 bit of the input
- Avalanche Diagram
 - A grid such that the \((x,y)\) cell's color represents the probability that flipping \(x \)th bit of input will result of \(y \)th bit being flipped in the output
False positive rate (1/2)
\[fp_r = \left(1 - \frac{1}{m}\right)^{kn} = (1 - e^{-kn/m})^k \]

\(m \) = number of bits in the filter
\(n \) = number of elements
\(k \) = number of hashing functions

False positive rate (2/2)

- A bloom filter with an optimal value for \(k \) and 1% error rate only needs 9.6 bits per key.
- Add 4.8 bits/key and the error rate decreases by 10 times
- 10,000 words with 1% error rate and 7 hash functions
 - ~12KB of memory
- 10,000 words with 0.1% error rate and 11 hash functions
 - ~18KB of memory

How big should I make my Bloom Filter?

- Try various values of \(k \) and \(m \)
 - To achieve target false-positive rate \((1 - e^{-kn/m}) \)

- Then, how many hash functions should I use?
 - The more hash functions you have
 - The slower your bloom filter
 - The quicker it fills up
 - If you have few hash functions
 - Too many false positives
 - Given an \(m \) and an \(n \), the optimal value of \(k \)
 - \((m/n)\ln(2) \)

Use cases

- Representing a very large dataset
- Reduce queries to external database
- Google BigTable

Downsides

- False positive rate
- Hard to remove elements from a Bloom filter set
 - Setting bits to zero
 - Often more than one element hashed to a particular bits
 - Use a Counting Bloom filter
 - Instead of bit, it stores count of occurrences
 - Requires more memory

Building Bloom Filter with MapReduce

- Loading data
- Bloom filter mapper
- Big vector generation
- Reduction phase
Running Bloom Filter with MapReduce

Bloom Filter Mapper

Input Split
Load filter
Bloom filter test
Output File
Discarded
Maybe
No

Bloom Filtering mapper (checking)

```java
public static class BloomFilteringMapper extends Mapper<Object, Text, Text, NullWritable> {
    private BloomFilter filter = new BloomFilter();

    protected void setup(Context context) throws IOException, InterruptedException {
        System.out.println("Reading Bloom filter from: "+DistributedCache.getCacheFiles(context.getConfiguration())[0].getPath());
        DataInputStream strm = new DataInputStream(new FileInputStream(DistributedCache.getCacheFiles(context.getConfiguration())[0].getPath()));
        filter.readFields(strm);
        strm.close();
    }
```

Hadoop Distributed cache is a mechanism supported by Hadoop mapreduce framework where the users can broadcast small or moderate size files to all of the worker nodes.

Bloom Filtering mapper (Checking) [1/2]

```java
public static class BloomFilteringMapper extends Mapper<Object, Text, Text, NullWritable> {
    private BloomFilter filter = new BloomFilter();

    protected void setup(Context context) throws IOException, InterruptedException {
        System.out.println("Reading Bloom filter from: "+DistributedCache.getCacheFiles(context.getConfiguration())[0].getPath());
        DataInputStream strm = new DataInputStream(new FileInputStream(DistributedCache.getCacheFiles(context.getConfiguration())[0].getPath()));
        filter.readFields(strm);
        strm.close();
    }
```

Bloom Filtering mapper (Checking) [2/2]

```java
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
    Map<String, String> parsed = transformXmlToMap(value.toString());
    String comment = parsed.get("Text");
    StringTokenizer tokenizer = new StringTokenizer(comment);
    while (tokenizer.hasMoreTokens()) {
        String word = tokenizer.nextToken();
        if (filter.membershipTest(new Key(word.getBytes()))) {
            context.write(value, NullWritable.get());
            break;
        }
    }
}
```

Questions?