FAQs

- PA0 submission is open
 - Feb. 6, 5:00PM via Canvas
 - Individual submission (No team submission)
 - If you have not been assigned the "port range", please contact the GTA immediately

- PA1 has been posted
 - Feb. 21, 5:00PM via Canvas
 - Individual submission (No team submission)

- Total Order Sorting Pattern

Topics

- MapReduce Design Pattern III. Data Organization Patterns
- MapReduce Design Pattern IV. Join Patterns

Part 1. Large Scale Data Analytics

Design Pattern 3: Data Organization Patterns

Total Order Sorting Pattern

- Sorts your data
 - e.g. Sorting 1TB of numeric values
 - e.g. Sorting comments by userID and you have a million users
Structure of Total Order Sorting Pattern

- Two phases
 - Analysis phase
 - Determines the ranges
 - Sorting phase
 - Actually sorts the data

Structure of Total Order Sorting Pattern
- Analysis phase
 - Performs a simple random sampling
 - Generates outputs with the sort key as its output keys
 - Data will show up as sorted at the reducer
 - Sampling rate?
 - Assume that the number of records in the entire dataset is known (or can be estimated)
 - If you plan on running the order with a thousand reducers
 - Sampling about a hundred thousand records will be enough
 - Only one reducer will be used
 - Collects the sort keys together into a sorted list
 - The list of sorted keys will be sliced into the data range boundaries

Structure of Total Order Sorting Pattern
- Sorting phase
 - Mapper extracts the sort key
 - Stores the sort key to the "value"
 - Custom partitioner
 - Use TotalOrderPartitioner (Hadoop API)
 - Takes the data ranges from the partition file and decides which reducer to send the data
 - Dynamic and load balanced
 - Reducer
 - The number of reducers needs to be equal to the number of partitions

Join Patterns
- Data is all over the place
- "Joins" allow users to create a smaller reference set or filter out or select dataset to discover interesting relationships across datasets
- Joining a terabyte of data onto another terabyte dataset could require up to two terabytes of bandwidth!
 - That’s before any actual join logic can be done!
1. Reduce Side Join Pattern
2. Replicated Join Pattern
3. Composite Join Pattern
4. Cartesian Product Pattern

A Refresher on Joins
- A Join is an operation that combines records from two or more datasets based on a field or set of fields
- Foreign key
- The foreign key is the field in a relational table that matches the column of another table
 - Used as a means to cross-reference between tables
Example

<table>
<thead>
<tr>
<th>UserID</th>
<th>Reputation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3738</td>
<td>New York, NY</td>
</tr>
<tr>
<td>4</td>
<td>12946</td>
<td>New York, NY</td>
</tr>
<tr>
<td>5</td>
<td>17556</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>9</td>
<td>3443</td>
<td>Oakland, CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UserID</th>
<th>PostID</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>35164</td>
<td>Not sure why this is getting downvoted.</td>
</tr>
<tr>
<td>3</td>
<td>48802</td>
<td>Hey, of course, it's all true!</td>
</tr>
<tr>
<td>5</td>
<td>48920</td>
<td>Please see my post below</td>
</tr>
<tr>
<td>8</td>
<td>48678</td>
<td>Thank you very much for your reply</td>
</tr>
</tbody>
</table>

Full outer join

Records from a foreign key not present in both table will be also in the final table.

Left Outer Join

Unmatched records in the "left" table will be in the final table.
Null values in the columns of the right table that did not match.

Right Outer Join

The right table records are kept and the left table values are null where appropriate.

Full outer join
contains all unmatched records from both tables.

Anti Join

<table>
<thead>
<tr>
<th>UserID</th>
<th>Reputation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3738</td>
<td>New York, NY</td>
</tr>
<tr>
<td>4</td>
<td>12946</td>
<td>New York, NY</td>
</tr>
<tr>
<td>5</td>
<td>17556</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>9</td>
<td>3443</td>
<td>Oakland, CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UserID</th>
<th>PostID</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>35164</td>
<td>Not sure why this is getting downvoted.</td>
</tr>
<tr>
<td>3</td>
<td>48802</td>
<td>Hey, of course, it's all true!</td>
</tr>
<tr>
<td>5</td>
<td>48920</td>
<td>Please see my post below</td>
</tr>
<tr>
<td>8</td>
<td>48678</td>
<td>HTML is not a subset of XML!</td>
</tr>
</tbody>
</table>

Inner Join

Dataset A

<table>
<thead>
<tr>
<th>UserID</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>New York, NY</td>
</tr>
<tr>
<td>4</td>
<td>New York, NY</td>
</tr>
<tr>
<td>5</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>9</td>
<td>Oakland, CA</td>
</tr>
</tbody>
</table>

Dataset B

<table>
<thead>
<tr>
<th>UserID</th>
<th>PostID</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>35164</td>
<td>Not sure why this is getting downvoted.</td>
</tr>
<tr>
<td>3</td>
<td>48802</td>
<td>Hey, of course, it's all true!</td>
</tr>
<tr>
<td>5</td>
<td>48920</td>
<td>Please see my post below</td>
</tr>
<tr>
<td>8</td>
<td>48678</td>
<td>HTML is not a subset of XML!</td>
</tr>
</tbody>
</table>

1. Reduce Side Join Pattern

- **MapReduce Design Patterns IV: Join Patterns**

1. **Join Pattern**

 - **Inner Join**
 - Records from both A and B that contain identical values for the given foreign key are brought together.
 - **Anti Join**
 - Full outer join minus the inner join.
Reduce Side Join Pattern

- Most straightforward implementation of a join in MapReduce
- Requires a large amount of network bandwidth
 - Bulk of the data is sent to the reduce phase
 - If you have resources available this will be a possible solution

Structure of the reduce side join pattern

Performance analysis

- The reducer side join puts a lot of strain on the cluster’s network
- The foreign key and output record of each input record are extracted
 - No data can be filtered ahead of time
 - Almost all of the data will be sent to the shuffle and sort step
- Reduce side joins will typically utilize relatively more reducers than your typical analytics

Driver Code

```java
    // Use MultipleInputs to set which input uses what mapper
    // This will keep parsing of each data set separate from a logical standpoint
    MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, UserJoinMapper.class);
    MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, CommentJoinMapper.class);
    job.getConfiguration();
```

User Mapper Code

```java
    public static class UserJoinMapper extends Mapper<
        Object, Text, Text, Text>
    {
        private Text outkey = new Text();
        private Text outvalue = new Text();
        public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {
            Map<String, String> parsed = MRDPUtils.transformXmlToMap(value.toString());
            String userId = parsed.get("Id");
            outkey.set(userId);
            // Flag this record for the reducer and then output
            outvalue.set("A" + value.toString());
            context.write(outkey, outvalue);
        }
    }
```

Comment mapper code

```java
    public static class CommentJoinMapper extends Mapper<
        Object, Text, Text, Text>
    {
        private Text outkey = new Text();
        private Text outvalue = new Text();
        public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {
            Map<String, String> parsed = MRDPUtils.transformXmlToMap(value.toString());
            String userId = parsed.get("UserId");
            outkey.set(userId);
            // Flag this record for the reducer and then output
            outvalue.set("B" + value.toString());
            context.write(outkey, outvalue);
        }
    }
```
Reducer Code

```java
public static class UserJoinReducer extends Reducer<Text, Text, Text, Text> {
    private static final Text EMPTY_TEXT = Text.create("");
    private Text tmp = new Text();
    private ArrayList<Text> listA = new ArrayList<Text>();
    private ArrayList<Text> listB = new ArrayList<Text>();
    private String joinType = null;

    public void setup(Context context) {
        // Get the type of join from our configuration
        joinType = context.getConfiguration().get("join.type");
    }

    public void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        // Clear our lists
        listA.clear();
        listB.clear();
        // Iterate through all our values, binning each record based on what
        // it was tagged with. Make sure to remove the tag!
        while (values.hasNext()) {
            tmp = values.next();
            if (tmp.charAt(0) == 'A') {
                listA.add(new Text(tmp.toString().substring(1)));
            } else if (tmp.charAt(0) == 'B') {
                listB.add(new Text(tmp.toString().substring(1)));
            }
            } // Execute our join logic now that the lists are filled
    executeJoinLogic(context);
    }

    private void executeJoinLogic(Context context) throws IOException, InterruptedException {
        ...
    }
}
```

Inner Join Code

```java
if (joinType.equalsIgnoreCase("inner")) {
    // If both lists are not empty, join A with B
    if (!listA.isEmpty() && !listB.isEmpty()) {
        for (Text A : listA) {
            for (Text B : listB) {
                context.write(A, B);
            }
        }
    }
}
```

Left outer Join Code

```java
else if (joinType.equalsIgnoreCase("leftouter")) {
    // For each entry in A,
    for (Text A : listA) {
        // If list B is not empty, join A and B
        if (!listB.isEmpty()) {
            for (Text B : listB) {
                context.write(A, B);
            }
        } else {
            // Else, output A by itself
            context.write(A, EMPTY_TEXT);
        }
    }
}
```

Right outer Join Code

```java
else if (joinType.equalsIgnoreCase("rightouter")) {
    // For each entry in B,
    for (Text B : listB) {
        // If list A is not empty, join A and B
        if (!listA.isEmpty()) {
            for (Text A : listA) {
                context.write(A, B);
            }
        } else {
            // Else, output B by itself
            context.write(EMPTY_TEXT, B);
        }
    }
}
```

MapReduce Design Patterns IV: Join Patterns

2. Replicated Join
Replicated Join

- Special type of join operation between one large and (many) small data set(s) that can be performed on the map-side
 - Mapper
 - Reads all files from the distributed cache during the setup phase
 - Sorting them in in-memory lookup tables
 - Performs mapper process
 - Joining data
 - If the foreign key is not found in the in-memory structure?
 - The record is either omitted or output (based on the join type)
 - No combiner/partitioner/reducer needed

Structure of the replicated join pattern

Hadoop DistributedCache

- Provided by the Hadoop MapReduce Framework
- Caches read-only text files, archives, jar files etc.
- Once a file is cached for a job using Distributed cache
 - Data will be available on each data node where map/reduce tasks are running

Working with DistributedCache

- Make sure
 - Your file is available and accessible via http:// or hdfs://
- Setup the application’s JobConf in your Driver class
 - `DistributeCache.addFileToClasspath(new Path("/usr/datafile/XYZ"))`

Size of DistributedCache in Hadoop

- Size
 - Default size of the Hadoop distributed cache is 10GB
- Data consistency
 - Hadoop Distributed Cache tracks the modification of timestamps of the cache file
- Overhead
 - Object serialization

Using DistributedCache for replicated join

- A small file is pushed to all map tasks using DistributedCache
- Useful for join between a small set and a large set of data
 - e.g. user information vs. transaction records, user information vs. comment history
- Mapper Code
 - Setup phase
 - User data is read from the DistributedCache and stored in memory
 - (UserID, record) pairs are stored in a HashMap for data retrieval during the map process
 - Map phase
 - For each input record (from the large dataset), the user information is retrieved from the HashMap
 - Assemble a joined record
Composite Join

- Joins very large datasets together
 - And if the datasets are sorted by foreign key
- No shuffle and sort needed
- Each input dataset must be partitioned and sorted in a specific way and divided into the same number of partitions

MapReduce Design Patterns IV: Join Patterns

3. Composite Join

Structure of the composite join pattern

- Partitioned and sorted datasets
 - Each input dataset must be partitioned and sorted in a specific way and divided into the same number of partitions
Questions?