CS435 BIG DATA

PART 1.
LARGE SCALE DATA ANALYSIS USING MAPREDUCE

Instructor: Sangmi Lee Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs435

Today’s topics

- FAQs
- Shuffle and Sort
- Finding similar items at scale

FAQs

- Demo for PA1 is going on

Shuffle and Sort

- Sort
 - MapReduce makes the guarantee that the input to every reducer is sorted by key
- Shuffle
 - MapReduce transfers the map outputs to the reducers as inputs
Shuffle and sort: In a map task

- Each map task has a circular memory buffer
 - For output
 - 100MB by default
 - `io.sort.mb`

- When the contents of the buffer reaches the threshold, a background thread starts spill the contents to disk
 - Default 0.80
 - Spills are written in round-robin-fashion to the local directory
 - `mapred.local.dir`

Partitioning

- Before the data is written to the local disk, data is divided into partitions corresponding to the reducers

- The background thread performs an in-memory sort by key
 - Within each partition

- Each time the memory buffer reaches the spill threshold, a new spill file is created
 - There can be several spill files after the last output record is written
 - The spill files are merged into a single partitioned and sorted output file

Output file

- Combiner is run
- Output files from map can be compressed

- The output file’s partitions are made available to the reducers over HTTP

Copy phase

- The reduce task needs the map output from several map tasks across the cluster

- Copy phase
 - The reduce task starts copying their outputs as soon as each completes
 - The map tasks may finish at different times
 - Merges them into larger and sorted files
 - Decompresses the compressed files
Sort phase

- Sort phase
 - All of the map outputs should be moved and copied to the reduce task
 - Merging and sorting the map outputs
 - Sorting is done in rounds
 - If there are 50 map outputs and the merge factor was 10
 - 5 intermediate files
 - Merging intermediate files: additional round
 - 6 rounds will be required
 - Final round
 - A mixture of in-memory and on-disk segments
 - Directly feeds the reduce function
 - Without write a single sorted file to disk

MapReduce

MapReduce is inspired by the concepts of map and reduce in Lisp.

Developed within Google as a mechanism for processing large amounts of raw data
- Crawled documents or web request logs
- Distributes those data across thousands of machines
- Same computations are performed on each CPU with different dataset

Part 1.
Large scale data analysis using mapreduce
3. Finding similar items at scale

Similarity of Documents

- Finding textually similar documents in a large corpus
 - Examples
 - Plagiarism
 - Mirror pages
 - Articles from the same source
 - News aggregators
 - Tries to find all versions of articles from the same source to show only one
 - Collaborative Filtering
 - Amazon's item-to-item CF
 - Movie recommendation

This material is developed based on,
Jaccard Similarity

Jaccard Coefficient (without description)
- Compare two sets P and Q with the following formula:
 \[\text{StringJaccard}(P, Q) = \frac{|P \cap Q|}{|P \cup Q|} \]
- Measures the fraction of the data that is shared between P and Q
- Compared to all data available in the union of these two sets.
- What are P and Q?
 - Set of tokens from Strings
 - Complete description about data (candidates)

Example
- DescriptionJaccard and StringJaccard have the same value. Is this always true?
 \[\text{DescriptionJaccard}(c_1, c_2) = \frac{|OD(c_1) \cap OD(c_2)|}{|OD(c_1) \cup OD(c_2)|} \]
 \[\text{StringJaccard}(P, Q) = \frac{|P \cap Q|}{|P \cup Q|} \]

- Now, specify the parts of a person’s name as title, firstname, middlename, and lastname
 \[OD(c_1) = \{\text{firstname, Thomas}, \text{middlename, Sean}, \text{lastname, Connery}\} \]
 \[OD(c_2) = \{\text{title, Sir}, \text{middlename, Sean}, \text{lastname, Connery}\} \]
 \[\text{DescriptionJaccard}(c_1, c_2) = 2 / 4 = 0.5 \]
 \[\text{StringJaccard}(P, Q) = 2 / 4 = 0.5 \]

Example
Example continued

What if “Sean” would have been put in the firstname/ middlename attribute?

OD(c₁) = {(middlename, Thomas), (firstname, Sean), (lastname, Connery)}
OD(c₂) = {(title, Sir), (middlename, Sean), (lastname, Connery)}

\[
\text{Description Jaccard} (c₁, c₂) = \frac{1}{5}
\]

Deficiencies of the Jaccard Similarity

• Some attribute is more descriptive
 • Title is less descriptive than firstname and lastname

• Very sensitive to typographical errors in single tokens
 • Shean Conery and Sean Connery have a similarity of zero.

Cosine similarity

• Given two \(n \)-dimensional vectors \(V \) and \(W \), the cosine similarity computes the cosine of the angle \(\alpha \) between these two vectors as

\[
\text{Cosine Similarity}(V, W) = \cos(\alpha) = \frac{V \cdot W}{\|V\| \cdot \|W\|}
\]

Where \(\|V\| \) is the length of the vector \(V = [a, b, c, \ldots] \) computed as

\[
\sqrt{a^2 + b^2 + c^2 + \ldots}
\]

Cosine similarity - Continued

• The vectors \(V \) and \(W \)
 • Tokens in a string
 • Descriptions of a candidate

• The \(d \) dimensions of these vectors correspond to all \(d \) distinct tokens in a set of strings.
 • Denoted as \(D \)

• For a large database, \(d \) may be large
 • \(V \) and \(W \) have high dimensionality \(d \)

Weight of Token

• Vector contains a weight for each of the \(d \) distinct tokens

• How to measure the weight?
 • Measuring frequency
 • Term frequency – inverse document frequency (tf-idf)
Inverse document frequency

- Assigns higher weights to tokens that occur less frequently in the scope of all candidate descriptions.

\[\text{idf}_{t,c} = \log \frac{N}{|\{c | (a,v) \in OD(c) \wedge t \in \text{tokenize}(v)\}|} \]

for the total number of candidates, \(N\)

tf-idf weighting

- The product of its \(tf\) weight and its \(idf\) weight

\[W_{t,d} = (1 + \log_{10} tf_{t,d}) \times \log_{10} \left(\frac{N}{df_t}\right) \]

For the total number of candidates, \(N\)

- Best known weighting scheme in information retrieval
 - Note: the "-" in \(tf-idf\) is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf \(\times\) idf
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection

Example

<table>
<thead>
<tr>
<th>CID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Allstate</td>
</tr>
<tr>
<td>c2</td>
<td>American Automobile Association</td>
</tr>
<tr>
<td>c3</td>
<td>American National Insurance Company</td>
</tr>
<tr>
<td>c4</td>
<td>Farmers Insurance</td>
</tr>
<tr>
<td>c5</td>
<td>GEICO</td>
</tr>
<tr>
<td>c6</td>
<td>John Hancock Insurance</td>
</tr>
<tr>
<td>c7</td>
<td>Liberty Insurance</td>
</tr>
<tr>
<td>c8</td>
<td>Mutual Insurance of America Life Insurance</td>
</tr>
<tr>
<td>c9</td>
<td>Safeway Insurance Group</td>
</tr>
<tr>
<td>c10</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Example continued

- Compute the similarity between the two strings \(s1=\text{Farmers Insurance}\), \(s2=\text{Liberty Insurance}\)

\[\text{idf}_{\text{Insurance}, c4} = \log_{10}(10/6) \]

\[\text{tf-idf}_{\text{Farmers}, c4} = (1+\log_{10} 1) \times \log_{10}(10/1) = 1 \]

\[\text{tf-idf}_{\text{Insurance}, c4} = (1+\log_{10} 1) \times \log_{10}(10/6) = 0.23 \]

\[\text{tf-idf}_{\text{Liberty}, c7} = (1+\log_{10} 1) \times \log_{10}(10/1) = 1 \]

\[\text{tf-idf}_{\text{Insurance}, c7} = (1+\log_{10} 1) \times \log_{10}(10/6) = 0.23 \]
Example continued

- Compute the similarity between the two strings $s_1=$Farmers Insurance, $s_2=$ Liberty Insurance

$$\text{CosSimilarity}(V,W) = \cos(\alpha) = \frac{V \cdot W}{||V|| \times ||W||} = \frac{0.23 \times 0.23}{\sqrt{0.23^2 + 1^2}} = 0.047$$

- What is the Jaccard similarity for the same case?

How can we compute TF-IDF based similarity analysis?

- Programming Assignment 2

Using n-Grams

A string is divided into smaller tokens of size n.
- q-grams or n-grams
- Size of n-gram is string with a length n
 - Size of n-gram words is string with a length n words

Generating n-grams
- Slide a window of size n over the string

Generating n-grams

$s_1 = \text{Henri Waternoose}$
$s_2 = \text{Henry Waternoose}$

- Generate 3-grams

- Q-grams of $s_1 = (\text{HH, HHe, Hen, enr, riri, rri, rri, _iW, _Wa, Wat, ate, ter, ern, mo, noo, oos, ose, seii, seifi})$
- Q-grams of $s_2 = (\text{HH, HHe, Hen, enr, rry, rry, _yW, _Wa, Wat, ate, ter, ern, mo, noo, ose, seii, seifi})$
n-gram based token similarity

- 13 overlaps among total 22 distinct n-grams.
- Overlaps: number of two item pairs having overlap

Jaccard similarity

\[
\text{StringJaccard}(s_1, s_2) = \frac{13}{22} = 0.59
\]

Using n-grams

- Using the same similarity measures used in other token based similarity computations
- Less sensitive to typographical errors
- What if we change the size of n?

How large should \(n \) be? [1/2]

- \(n \) should be picked large enough that the probability of any given n-gram appearing in any given document is low

Example

- Our corpus of documents is emails
 - Printable ASCII characters \(2^5 = 14,348,907 \) possible 5-grams
 - Is it really true with real emails?

How large should \(n \) be? [2/2]

- All characters do not appear with equal probability
- Imagine that there are only 20 characters and estimate the number of n-grams as \(20^n \)
- For research articles, a choice of \(n = 9 \) is considered safe
Near Neighbor (NN) Search
- Also known as proximity search, similarity search
- Finding closest or most similar points
- The post-office problem
- Assigning to a residence the nearest post office

Hashing n-grams
- Creating buckets and use the bucket numbers as the shingles
- For the set of 9-grams,
 - Map each of those 9-grams to a bucket number in the range 0 to $2^{32} - 1$
 - 9 bytes of data is compacted to 4 bytes
- Can hash-based approaches provide NN search results?

Applications of Near-neighbor search: Minhashing

Similarity-preserving summaries of set
- Signatures
 - Replacing large sets of n-grams by much smaller representations
 - We should be able to compare the signatures of two sets and estimate the Jaccard similarity
 - Of the underlying sets from the signatures alone

Matrix representations of sets

Minhashing
- Signature generating algorithm
 - Minhash of the characteristic matrix
 - Minhash of a set is the number of the row (element) with first non-zero in the permuted order π
 - $\pi = (b, e, a, d, c)$

<table>
<thead>
<tr>
<th>Element</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(a, b, c, d, e)
S1 = (a, d)
S2 = (c)
S3 = (b, d, e)
S4 = (a, c, d)
Minhash and Jaccard Similarity

- **Theorem:**
 - \(P(\text{minhash}(S) = \text{minhash}(T)) = JaccardSIM(S,T) \)

Proof:

\[
\begin{align*}
X &= \text{number of rows with 1 for both } S \\
 & \quad \text{and } T \text{ (e.g. } x = 1) \\
Y &= \text{number of rows with either } S \text{ or } T \\
 & \quad \text{have 1, but not both (e.g. } y = 2) \\
Z &= \text{number of rows with both 0 (e.g. } z = 2) \\

P(\text{minhash}(S) = \text{minhash}(T)) &= \frac{X}{X+Y} = JaccardSIM(S,T)
\end{align*}
\]