PART 1.
LARGE SCALE DATA ANALYSIS USING MAPREDUCE

Sangmi Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs435

Today’s topics
• FAQs
• Distance measures
• Link Analysis

FAQs
• Programming Assignment 1
 - Feb. 21st 5:00PM via Canvas
 - Individual submission
 - Please do not submit your output file!

Distance Measures

Distance measure
A distance measure over a space is a function \(d(x,y) \) that takes two points in the space as arguments and produces a real number that satisfies the following axioms:

A metric on a set \(X \) is a function (A.K.A. distance function) \(d: X \times X \to [0, \infty) \),
1. \(d(x,y) \geq 0 \) (no negative distance)
2. \(d(x,y) = 0 \) if and only if \(x = y \)
3. \(d(x,y) = d(y,x) \) (distance is symmetric)
4. \(d(x,y) \leq d(x,z) + d(z,y) \) (the triangle inequality)

Distance measures
- Euclidean distances
 \[d([x_1, x_2, \ldots, x_n], [y_1, y_2, \ldots, y_n]) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]
- Jaccard distance
 \[d_{\text{Jaccard}}(x,y) = 1 - \text{Jaccard}_\text{SIM}(x,y) \]
- Cosine distance
 Degree between the vectors
- Hamming distance
 The number of components in which they differ
 - 10111 and 11107
What are these?

- Archie
- Veronica
- Infoseek
- Snap
- Direct Hit
- Lycos
- AltaVista
- Excite
- Yahoo
- Google

Goals

- Understanding large problem with unstructured data
- Applying analytics using MapReduce

Early Search Engines

- They worked by crawling the Web and listing the terms
 - Words or other strings of characters other than white space
 - In an inverted index
 - An inverted index is a data structure that makes it easy, given a term, to find (pointer to) all the places where that term occurs

Inverted index (1/2)

- Inverted index
 - For given texts:

 \[
 T[0] = \text{"Colorado State University"}
 T[1] = \text{"Colorado water source"}
 T[2] = \text{"University of Colorado"}
 \]
 - We have the following inverted file index

```

<table>
<thead>
<tr>
<th>Term</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Colorado&quot;:</td>
<td>{0,1,2}</td>
</tr>
<tr>
<td>&quot;water&quot;:</td>
<td>{1}</td>
</tr>
<tr>
<td>&quot;State&quot;:</td>
<td>{0}</td>
</tr>
<tr>
<td>&quot;University&quot;:</td>
<td>{0,2}</td>
</tr>
<tr>
<td>&quot;water&quot;:</td>
<td>{1}</td>
</tr>
</tbody>
</table>
```

Inverted index (2/2)

- A term search for the terms, "Colorado", "State", and "University" would give the set

\[
\{0,1,2\} \cap \{0\} \cap \{0,2\} = \{0\}
\]
Term spam
- If you were selling shirts on the Web
 - All you care about was that people would see your page
- You could add a term like "movie" to your page
 - Add thousands of times
 - It does not even need to show
 - Give the same color as background to the letters
- A search engine would think this page is very important one about "movie"
- You could go to the search engine and search "movie" and see the first listed page
 - Copy that page with the same color as background

Link Analysis
PageRank Algorithm

PageRank
- Goals
 - Providing effective summaries for the search results
 - Ordering/Ranking results
- Simulate random Web surfers
 - Pages that would have a large number of surfers were considered more "important" than pages that would rarely be visited
- The content of a page was judged not only by the terms appearing on that page
 - But by the terms used in or near the links to that page

Definition of PageRank
- A function that assigns a real number to each page in the Web
- The higher the PageRank of a page, the more "important" it is
- There is NOT one fixed algorithm for assignment of PageRank
Example [1/5]

- Page A has links to B, C and D
- Page B has links to A and D
- Page C has a link to A
- Page D has links to B and C

Example [2/5]

- Suppose that a random surfer starts at page A
- Page B, C and D will be the next with probability 1/3
 - 0 probability of being at A

Example [3/5]

- Now suppose the random surfer at B
 - B has probability ¼ of being at A, ¼ of being at D and 0 of being at B or C

Example [4/5]

- Transition matrix M
 - What happens to random surfers after one step
 - M has n rows and columns
 - What is the transition matrix for this example?
Example

\[
M = \begin{bmatrix}
0 & 1/2 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0
\end{bmatrix}
\]

- The first column
 - a surfer at A has a 1/3 probability of next being at each of the other pages
- The second column
 - a surfer at B has a \(1/2 \) probability of being next at A and the same for being at D

What does this matrix mean?

- If we surf at any of the n pages of the Web with equal probability
 - The initial vector \(v_0 \) will have \(1/n \) for each component
 - If \(M \) is the transition matrix of the Web
 - After the first one step, the distribution of the surfer will be \(Mv_0 \)
 - After two steps, \(M(Mv_0) = M^2v_0 \) and so on

What does this matrix mean?

- The probability \(x_i \) that a random surfer will be at node \(i \) at the next step
 \[
x_i = \sum_j m_{ij}v_j
\]
- \(m_{ij} \) is the probability that a surfer at node \(j \) will move to node \(i \) at the next step
- \(v_j \) is the probability that the surfer was at node \(j \) at the previous step

What does this matrix mean?

- The distribution of the surfer approaches a limiting distribution \(v \) that satisfies \(v = Mv \) provided two conditions are met:
 1. The graph is strongly connected
 - It is possible to get from any node to any other node
 2. There are no dead ends
 - Nodes that have no arcs out

Note: This condition will be re-visited with taxation of the PageRank algorithm
What does this matrix mean? [6/6]

- The limit is reached when multiplying the distribution by \(M \) another time does not change the distribution
- The limiting \(v \) is an eigenvector of \(M \)
- For the Web, 50-75 iterations are sufficient to converge to within the error limits of double-precision arithmetic

Example

\[
M = \begin{bmatrix}
0 & 1/2 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0 \\
\end{bmatrix}
\]

- Suppose we apply this process to the matrix \(M \)
- The initial vector \(v_0 \) and \(v_1 \) after multiplying \(M \)

\[
v_1 = Mv_0 = \begin{bmatrix}
0/24 \\
9/24 \\
5/24 \\
5/24 \\
\end{bmatrix}
\]

What is the \(v_2 \)?

\[
M = \begin{bmatrix}
0 & 1/2 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0 \\
\end{bmatrix}
\]

- Suppose we apply this process to the matrix \(M \)
- The initial vector \(v_0 \) and \(v_1 \) after multiplying \(M \)

\[
v_1 = Mv_0 = \begin{bmatrix}
0/24 \\
9/24 \\
5/24 \\
5/24 \\
\end{bmatrix}
\]

Example continued

- The sequence of approximations to the limit
 - We get by multiplying at each step by \(M \) is

\[
\begin{array}{cccc}
1/4 & 9/24 & 55/48 & 11/32 \\
1/4 & 5/24 & 11/48 & 7/32 \\
1/4 & 5/24 & 11/48 & 17/32 \\
1/4 & 5/24 & 7/32 & 2/9 \\
\end{array}
\]

- This difference in probability is not noticeable
- In the real Web, there are billions of nodes of greatly varying importance
 - The probability of being at a node like www.amazon.com is orders of magnitude greater than others

Link Analysis
Matrix multiplication using MapReduce
Matrix-vector Multiplication by MapReduce [1/3]

- Suppose we have an \(n \times n \) matrix \(M \), whose element in row \(i \) and column \(j \) will be denoted \(M_{ij} \).
- Then the matrix-vector product is the vector \(x \) of length \(n \), whose \(i \)th element \(x_i \) is given by,

\[
x_i = \sum_{j=1}^{n} M_{ij}v_j
\]

Matrix-vector Multiplication by MapReduce [2/3]

- If \(n = 100 \), we do not need DFS or MapReduce.
- However, if this calculation is a part of ranking Web pages (\(n \) is 10M) that goes on at search engine? The vector \(v \) cannot fit in main memory.
 - More than 1.4B pages.

Matrix-vector Multiplication by MapReduce [3/3]

- The matrix \(M \) and the vector \(v \) each will be stored in a file of the DFS(HDFS).
- Assume that row-column coordinates of each matrix element will be discoverable.
 - Either from its position in the file or explicit coordinates.

The Map function

- The Map function is written to apply to one element of \(M \).
- Each Map task will operate on a chunk of the matrix \(M \).
- From each matrix element \(m_{ij} \), it produces the key-value pair \((i, m_{ij}) \).
- All terms of the sum that make up the component \(x_i \) of the matrix-vector product will get the same key, \(i \).

The Reduce function

- Sums all the values associated with a given key \(i \).
- The result will be a pair \((i, x_i) \).

If the vector \(v \) cannot fit in main memory?

- It is possible that the vector \(v \) is so large that it will not fit in its main memory entirely.
- We can divide the matrix into vertical stripes of equal width and divide the vector into an equal number of horizontal stripes of the same height.
 - The goal is to use enough stripes so that the portion of the vector in one stripe can fit into main memory.
Matrix M and Initial Vector v divided into five stripes.

The ith stripe of the matrix multiplies only components from the ith stripe of the initial vector.

Results:

\[
\begin{align*}
(0.002 & \times \frac{1}{n}) + (0.017 & \times \frac{1}{n}) + (0.003 & \times \frac{1}{n}) + (0.010 & \times \frac{1}{n}) + \cdots \\
+ (M_{01} & \times v_1) + (M_{02} & \times v_2) + \cdots \\
\end{align*}
\]

Structure of Web (1/3)
- Is the Web strongly connected?

Structure of Web (2/3)
- Consisting of pages reachable from the In Component but unable to reach the SCC
- Tendrils Out
- Tendrils In
- Strongly Connected Component

Structure of Web (3/3)
- Tubes
 - Pages reachable from the In component and able to reach the output component, but unable to reach the SCC
- Isolated components
 - Unreachable from the large components
Anomalies from the Web structure

- These structures violate the assumptions needed for the Markov process iteration to converge to a limit
 - When a random surfer enters the out-component, they can never leave
 - Surfers starting in either the SCC or in-component are going to wind up in either the out-component or a tendril off the in-component
 - No page in the SCC or in-component winds up with any probability of a surfer being there
 - Nothing in the SCC or in-component will be of any importance

Problems we need to avoid

- Dead end
 - A page that has no links out
 - Surfers reaching such a page will disappear
 - In the limit, no page that can reach a dead end can have any PageRank at all

- Spider traps
 - Groups of pages that all have outlinks but they never link to any other pages

Avoiding Dead Ends

- If we allow dead ends
 - The transition matrix of the Web is no longer stochastic
 - Some of the columns will sum to 0 rather than 1

- If we compute M^k for increasing powers of a substochastic matrix
 - Some of all of the components of the vector go to 0
 - substochastic matrix
 - A matrix whose column sums are at most 1
 - Importance "drains out" of the Web
 - No information about the relative importance of pages
Repeatedly multiplying the vector by M:

\[
\begin{bmatrix}
\frac{1}{6} & \frac{1}{24} & \frac{5}{48} & \frac{21}{288} & 0 \\
\frac{1}{6} & \frac{1}{24} & \frac{7}{48} & \frac{31}{288} & 0 \\
\frac{1}{6} & \frac{1}{24} & \frac{7}{48} & \frac{31}{288} & 0 \\
\frac{1}{6} & \frac{1}{24} & \frac{7}{48} & \frac{31}{288} & 0 \\
\end{bmatrix}
\]

- The probability of a surfer being anywhere goes to 0 as the number of steps increase.

Approaches to dealing with dead ends

- Recursive deletion
 - Drop the dead ends from the graph
 - Drop their incoming arcs as well
 - Doing so may create more dead ends
 - Drop those new dead ends

- Taxation
 - Modify the process by which random surfers are assumed to move about the Web

Example of recursive deletion (1/4)

Example of recursive deletion (2/4)

- The final matrix for the graph is

\[
M = \begin{bmatrix}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{1}{3} & \frac{1}{6} & \frac{3}{12} & \frac{5}{24} & \frac{2}{9} \\
\frac{1}{3} & \frac{3}{6} & \frac{5}{12} & \frac{11}{24} & \ldots & \frac{4}{9} \\
\frac{1}{3} & \frac{2}{6} & \frac{4}{12} & \frac{8}{24} & \ldots & \frac{3}{9} \\
\end{bmatrix}
\]

Example of recursive deletion (3/4)

- We still need to compute deleted nodes (C and E)
 - C was the last to be deleted
 - We know all its predecessors have PageRanks (A and D)
 - Therefore,
 \[
 \text{PageRank of C} = \frac{1}{3} \times \frac{2}{9} + \frac{1}{3} \times \frac{3}{9} = \frac{13}{54}
 \]

Example of recursive deletion (4/4)

- Now, we can compute the PageRank for E
 - Only one predecessor, C
 - The PageRank of E is the same as that of C (13/54)

- The sums of the PageRanks exceeds 1
 - It cannot represent the distribution of a random surfer
 - It provides a good estimate