Programming Assignment 2 [1/4]

- Document Summarization using TF/IDF Scores and
 - Due: October 16 5:00PM
 - Via Canvas

- We have a collection of M documents

- Term Frequency
 - Augmented TF to prevent a bias towards longer documents
 - $TF_{ij} = 0.5 + 0.5 \left(\frac{f_{ij}}{\max_k f_{kj}} \right)$
 - The most frequent term in the document will have a augmented TF value of 1.

- Inverted Document Frequency
 - $IDF_i = \log_{10} \left(\frac{N}{n_i} \right)$
 - where, N is the total number of articles

- TF-IDF
 - $TF_i \times IDF_i$

Programming Assignment 2 [2/4]

- Term i appears in n_i articles within the corpus

- Inverted Document Frequency
 - $IDF_i = \log_{10}(N/n_i)$
 - where, N is the total number of articles

- TF-IDF
 - $TF_i \times IDF_i$

Programming Assignment 2 [3/4]

- How to score a sentence
 - $Sentence_{TF-IDF}(S) = \text{Sum of top } n \text{ TF-IDF values}$
 - Use 5 for PA2

- Select top 3 sentences and order them based on the original order

Programming Assignment 2 [4/4]

- You should calculate the TF, IDF, and $TF-IDF$ values for all terms for all sub-collections in your corpus. You are required to use MapReduce(s) for this step. Custom implementations without using MapReduce is disallowed.

- Create the summaries of articles (Use 1G data files).

- You should store the results in a HDFS file.

- For a given article (GTA will provide an article for the demo), your software should be able to generate a summary using values generated in (1). You do not need to re-calculate IDF for this step. You are required to use MapReduce for this step. Again, custom implementations that do not use MapReduce is disallowed.

Topics covered in this lecture

- Large-scale Analytics 1. Web-Scale Link and Social Network Analysis
 - Challenges in PageRank Algorithm
 - Dead ends
 - Spider traps
 - Using PageRank in a search engine
Part 1. Large Scale Data Analytics
1. Web-Scale Link Analysis and Social Network Analysis

Web-Scale Link Analysis

Challenges in PageRank Algorithm for the real Web

Avoiding Dead Ends

What if we allow dead ends?

• The transition matrix of the Web is no longer stochastic
 • Some of the columns will sum to 0 rather than 1

• If we compute M^k for increasing powers of a substochastic matrix
 • Some of all of the components of the vector go to 0
 • Substochastic matrix
 • A matrix whose column sums are at most 1
 • Importance "drains out" of the Web
 • No information about the relative importance of pages

Problems we need to avoid

• Dead end
 • A page that has no links out
 • Surfers reaching such a page will disappear
 • In the limit, no page that can reach a dead end can have any PageRank at all

• Spider traps
 • Groups of pages that all have out links but they never link to any other pages

This material is built based on,

 • Chapter 5
 • http://infolab.stanford.edu/~ullman/mmds.html
• Remove the arc from C to A
 → C becomes a dead end
If a random surfer reaches C, they disappear at the next round

\[
M = \begin{bmatrix}
0 & 1/2 & 0 & 0 \\
0 & 0 & 1/2 & 0 \\
0 & 0 & 0 & 1/2 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

• Repeatedly multiplying the vector by M:

\[
\begin{bmatrix}
0 & 1/24 & 5/48 & 21/288 \\
0 & 5/24 & 7/48 & 31/288 \\
0 & 5/24 & 7/48 & 31/288 \\
0 & 5/24 & 7/48 & 31/288
\end{bmatrix}
\]

• The probability of a surfer being anywhere goes to 0 as the number of steps increase.

Approaches to dealing with dead ends

• Recursive deletion
 • Drop the dead ends from the graph
 • Drop their incoming arcs as well
 • Doing so may create more dead ends
 • Drop those new dead ends

• Taxation
 • Modify the process
 • Random surfers are assumed to move around on the Web without links

Example of recursive deletion (1/4)

Example of recursive deletion (2/4)

• The final matrix for the graph is

\[
M = \begin{bmatrix}
0 & 1/2 & 0 & 0 \\
5/24 & 7/48 & 31/288 & 0 \\
1/3 & 1/6 & 3/12 & 5/24 \\
1/3 & 3/6 & 5/12 & 11/24 \\
1/3 & 2/6 & 4/12 & 8/24 \\
1/3 & 2/6 & 4/12 & 8/24
\end{bmatrix}
\]

Example of recursive deletion (3/4)

• We still need to compute deleted nodes (C and E)
 • C was the last to be deleted
 • We know all its predecessors have PageRanks (A and D)
 • Therefore,
 • PageRank of C = 1/3 x 2/9 + 5/6 x 3/9 = 13/54
Example of recursive deletion (4/4)

- Now, we can compute the PageRank for E
 - Only one predecessor, C
 - The PageRank of E is the same as that of C (13/54)
- The sums of the PageRanks exceeds 1
 - It provides a good estimate

Spider Traps and Taxation

- Spider traps
 - A set of nodes with no dead ends but no arcs out (from the set of nodes to the outside of the set)
 - This can appear intentionally or unintentionally on the Web
 - Spider traps causes the PageRank calculation to place all the PageRank within the spider traps

Example 1

- There is a simple spider trap of 4 nodes
 - If we perform the usual iteration to compute the PageRank of the nodes, we get

Example 2

- The arc out of C changed to point to C itself
- C is a simple spider trap of one node
 - It still has outgoing edge to itself
 - It is not a dead end
If we perform the usual iteration to compute the PageRank of the nodes, we get:

\[
\begin{bmatrix}
0 & 5/24 & 5/48 & 21/288 & 0 \\
0 & 7/48 & 29/48 & 205/288 & 0 \\
5/24 & 7/48 & 31/288 & ... & 1 \\
\end{bmatrix}
\]

- All the PageRank is at C
 - Once there, a random surfer can never leave

To avoid Spider traps,

- We modify the calculation of PageRank
 - Allowing each random surfer a small probability of teleporting to a random page
 - Rather than following an out-link from their current page

The iterative step, where we compute a new vector estimate of PageRanks v' from the current PageRank estimate v and the transition matrix M is:

\[
v' = \beta M v + \frac{(1 - \beta) e}{n}
\]

- β is a chosen constant
 - Usually in the range 0.8 to 0.9
- e is a vector for all 1’s with the appropriate number of components
- n is the number of nodes in the Web graph

If the graph has no dead ends:
- The probability of introducing a new random surfer is exactly equal to the probability that the random surfer will decide to follow a link from their current page
- Surfer decides either to follow a link or teleport to a random page

If the graph has dead ends:
- The surfer goes nowhere
- The term $(1-\beta)\frac{e}{n}$ does not depend on the sum of the components of the vector v; there will be some fraction of a surfer operating on Web
- When there are dead ends, the sum of the components of v may be less than 1
 - But it will never reach 0
Example of Taxation (1/2)

\[
M = \begin{bmatrix}
0 & 1/2 & 0 & 0 \\
1/3 & 0 & 1/2 & 0 \\
1/3 & 0 & 1/2 & 0 \\
1/3 & 0 & 1/2 & 0 \\
\end{bmatrix}
\]

\[v' = \beta M v + (1 - \beta)e / n\]

\[\beta = 0.8\]

\[
v' = \begin{bmatrix}
0 & 2/5 & 0 & 0 \\
4/15 & 0 & 2/5 & 0 \\
4/15 & 2/5 & 0 & 0 \\
\end{bmatrix}
\]

Example of Taxation (2/2)

- First few iterations:

\[
\begin{array}{cccc}
9/60 & 41/300 & 543/4500 & 15/148 \\
3/60 & 53/300 & 2543/4500 & 95/148 \\
13/60 & 707/4500 & 95/148 \\
\end{array}
\]

- By being a spider trap, C gets more than ½ of the PageRank for itself
- Effect is limited
- Each of the nodes gets some of the PageRank

Part 1. Large Scale Data Analytics

1. Web-Scale Link Analysis and Social Network Analysis

Challenges in PageRank Algorithm for the real Web: Examples

Example 1

- Compute the PageRank of each page assuming \(\beta = 0.8\)

\[
M = \begin{bmatrix}
1/3 & 1/2 & 1/3 \\
1/3 & 0 & 1/2 \\
1/3 & 0 & 0 \\
\end{bmatrix}
\]

\[v_0 = \begin{bmatrix}
1/3 \\
1/3 \\
0 \\
\end{bmatrix}\]

\[\beta M v_0 + (1 - \beta)e / n\]

\[= 0.8 \begin{bmatrix}
1/3 \\
1/3 \\
0 \\
\end{bmatrix} + (1 - 0.8)e / 3\]

Example 2

- **clique**
 - Set of nodes with all possible arcs from one to another
 - Suppose the Web consists of a clique of \(n\) nodes and a single additional node that is the successor of each of the \(n\) nodes in the clique

Example 2

- Determine the PageRank of each page assuming \(\beta = 0.8\)
- Is there a dead end?
- Is there a spider trap?
Example 2

- Determine the PageRank of each page assuming $\beta = 0.8$
- Is there a dead end?
 - Yes. E
- Is there a spider trap?
 - No. Having clique does not mean that there is a spider trap

$$M = \begin{bmatrix}
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{4} & \frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{4} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{4} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15}
\end{bmatrix}$$

$$v_0 = \begin{bmatrix}
\frac{1}{5} \\
\frac{1}{5} \\
\frac{1}{5} \\
\frac{1}{5} \\
\frac{1}{5}
\end{bmatrix}$$

$$\beta M v_0 + (1 - \beta) e/n = 0.8 \times \begin{bmatrix}
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{4} & \frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{4} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{4} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{4} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15}
\end{bmatrix} v_0 + \frac{1 - 0.8}{5} \begin{bmatrix}1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}$$

Example 3

- Suppose that we recursively eliminate dead ends from the Web graph to solve the remaining graph
- Suppose that the graph is a chain of dead ends, headed by a node with a self-loop
- What would be the PageRank assigned to each of the nodes?

Example 3

- Remove all of the dead ends recursively
- What is v_0 and M?

$$v_0 = \begin{bmatrix}1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}, M = \begin{bmatrix}1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}$$
Searching pages

- Each search engine has a secret formula that decides the order in which to show pages to the user in response to a search query consisting of one or more search terms
- Google uses more than 250 different properties of pages

Generating the final lists

- Selecting candidate pages
 - A page has to have at least one of the search terms in the query
 - Applying weight
 - Presence or absence of search terms in prominent places
 - e.g. headers or the links to the page itself
- Among the qualified pages, a score is computed for each
 - PageRank score

Problems in performing PageRank

- To compute the PageRank for a Web graph
 - We should perform a matrix-vector multiplication of the order of 50 times
 - Until the vector is close to unchanged at one iteration
- The transition matrix of the Web M is very sparse
 - Representing it by all its elements is highly inefficient
 - We want to represent the matrix by only its nonzero elements
 - We want to reduce the amount of data that must be passed from the Map tasks to Reduce tasks

Representing Transition Matrices (1/2)

- The average Web page has about 10 out-links
 - We are analyzing a graph of 1.4 billion pages
 - Only one in 0.14 billion (140 million) entries is not 0
- Can we list the location of the nonzero entries and their values?
 - If we use two 4-byte integers for coordinates (row#, col#) of an element and an 8-byte double-precision number for the probability value
 - 16-bytes per nonzero entry
 - The space needed is linear of nonzero entries
Representing Transition Matrices (2/2)

- For the Web graph
 - The value will be 1 divided by the out-degree of the page

\[
M = \begin{pmatrix}
0 & 1/2 & 0 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 1 & 1/2 \\
1/3 & 1/2 & 0 & 0 \\
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>Degree</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>B, C, D</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>A, D</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>B, C</td>
</tr>
</tbody>
</table>

Mapper generates \((key, value) = (destinations, 1/\text{degree})\)

- For the source A, \((B, 1/3), (C, 1/3), (D, 1/3)\)
- For the source B, \((A, 1/2), (D, 1/2)\)
- For the source C, \((C, 1)\)
- For the source D, \((B, 1/2), (C, 1/2)\)

Reducer calculates

\[v' = \beta M v + \left(1 - \beta\right) e / n\]

- First round of MapReduce
 - Calculate \(Mv\) and store the result to \(v'\)
- Second round of MapReduce
 - For each component, multiply \(\beta\) and add \(\left(1 - \beta\right) e / n\)

PageRank Iteration Using MapReduce

- One iteration of the PageRank algorithm involves,
 \[
v' = \beta M v + \left(1 - \beta\right) e / n\]

- If \(n\) is small enough that each Map task can store the full vector \(v\) in main memory
 - And \(v'\)
 - For the Web, \(v\) is much too large to fit in main memory
 - We need striping
 - \(M\) into vertical stripes and break \(v\) into corresponding horizontal strips

Architecture of a Spam Farm

- **Spam Farm**
 - A collection of pages whose purpose is to increase the PageRank of a certain page or pages
 - From the point of view of the spammer, the Web is divided into two parts
 - **Inaccessible pages**
 - The pages that the spammer cannot affect
 - **Most of the Web**
 - **Accessible pages**
 - Those pages that, while they are not controlled by the spammer, can be affected by the spammer
The Web from the point of view of the link spammer

Understanding Spam Farm (1/2)
- Setting the links to the target page
 - Without link from outside, the spam farm is not useful
 - e.g. Blogs or news papers
 - Comments like "I agree. Please see my article at www.mySpamFarm.com"

Understanding Spam Farm (2/2)
- There is one page t, the target page
 - Spammer attempts to place as much PageRank as possible
- There are a large number of m supporting pages
 - Accumulate the portion of the PageRank that is distributed equally to all pages
 - The fraction $1-\beta$ of the PageRank that represents surfers going to a random page
 - Prevent the PageRank of t from being lost
 - Note that all of the supporting pages links only to t

Analysis of a Spam Farm (1/6)
- A taxation parameter β
 - The fraction of a page's PageRank that gets distributed to its successors at the next round
- Let there be,
 - n pages on the Web in total
 - A target page t
 - m supporting pages

Analysis of a Spam Farm (2/6)
- Let x be the amount of PageRank contributed by the accessible pages
 - x is the sum over all accessible page p with a link to t, of the PageRank of p times β divided by the number of successors of p
- Finally, let y be the unknown PageRank of t

Analysis of a Spam Farm (3/6)
- The PageRank of each supporting page
 - $\beta y/m + (1-\beta)/n$
- First term represents the contribution from t
 - βy is distributed to t's successors
- Second term is the supporting page's share of the fraction $1-\beta$ of the PageRank that is divided equally among all pages on the Web
Analysis of a Spam Farm (4/6)

• PageRank of \(y \) of target page \(t \) is (1)+(2)+(3)
 1. Contribution \(x \) from outside
 2. \(\beta \) times the PageRank of every supporting page
 \[\beta m(y/m + (1-\beta)/n) \]
 3. \((1-\beta)/n \), the share of the fraction \(1-\beta \) of the PageRank that belongs to \(t \)
 This amount is negligible

Analysis of a Spam Farm (5/6)

• From (1) and (2),
 \[y = x + \beta m(y/m + (1-\beta)/n) \]
 \[y = \frac{x}{1-\beta} + \frac{m}{n} \]
 Where
 \[c = \beta(1-\beta)/(1-\beta^2) \]

Analysis of a Spam Farm (6/6)

• If we choose \(\beta = 0.85 \), then \(1/(1-\beta^2) = 3.6 \)
 \[c = \beta(1+\beta) = 0.46 \]

• The structure has amplified the external PageRank contribution by 360%

• Also, it obtained an amount of PageRank that is 46% of the fraction of the Web, \(m/n \), that is in the spam farm

Example

• Suppose that both the PageRank and TrustRank were computed
• Teleport set was page B and D
• Which nodes are not the link spams?
• Is there any link spam?

<table>
<thead>
<tr>
<th>Web Page</th>
<th>PageRank</th>
<th>TrustRank</th>
<th>Spamness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/9</td>
<td>3/9</td>
<td>0.229</td>
</tr>
<tr>
<td>B</td>
<td>2/9</td>
<td>3/9</td>
<td>-0.284</td>
</tr>
<tr>
<td>C</td>
<td>2/9</td>
<td>3/9</td>
<td>0.186</td>
</tr>
<tr>
<td>D</td>
<td>2/9</td>
<td>3/9</td>
<td>-0.284</td>
</tr>
</tbody>
</table>

Questions?