FAQs

- Deadline of PA1 has been extended
 - Feb. 22, 5:00PM via Canvas
 - Individual submission (No team submission)
 - Late submission is still available until Feb. 25, 5:00PM via Canvas

Programming Assignment 2 [1/4]

- Document Summarization using TF/IDF Scores and
 - Due: March 22nd 5:00PM
 - Via Canvas
- We have a collection of M documents
- Term Frequency
 - Augmented TF to prevent a bias towards longer documents
 \[TF_{ij} = 0.5 + 0.5 \left(\frac{f_{ij}}{\max_k f_{kj}} \right) \]
 - The most frequent term in the document will have an augmented TF value of 1.

Programming Assignment 2 [2/4]

- Term \(i \) appears in \(n_i \) articles within the corpus
- Inverted Document Frequency
 \[IDF_i = \log_{10} \left(\frac{N}{n_i} \right) \]
 where, \(N \) is the total number of articles
- TF.IDF
 \[TF_i x IDF_i \]

Programming Assignment 2 [3/4]

- How to score a sentence
 - Sentence.TF.IDF(S_k) = Sum of top \(n \) TF.IDF values
 - Use 5 for PA2
- Select top 3 sentences and order them based on the original order

Programming Assignment 2 [4/4]

- You should calculate the TF, IDF, and TF-IDF values for all terms for all sub-collections in your corpus. You are required to use MapReduce(s) for this step. Custom implementations without using MapReduce is disallowed.
- Create the summaries of articles (Use 1G data files).
- You should store the results in a HDFS file.
- For a given article (GTA will provide an article for the demo), your software should be able to generate a summary using values generated in (1). You do not need to re-calculate IDF for this step. You are required to use MapReduce for this step. Again, custom implementations that do not use MapReduce is disallowed.
Topics

• Large-scale Analytics 1. Web-Scale Link and Social Network Analysis

This material is built based on,

 • Chapter 5

• http://infolab.stanford.edu/~ullman/mmds.html

Part 1. Large Scale Data Analytics
1. Web-Scale Link Analysis and Social Network Analysis
 Web-Scale Link Analysis

Searching pages

• Each search engine has a secret formula that decides the order in which to show pages to the user in response to a search query consisting of one or more search terms

• Google uses more than 250 different properties of pages

Generating the final lists

• Selecting candidate pages
 • A page has to have at least one of the search terms in the query
 • Applying weight
 • Presence or absence of search terms in prominent places
 • e.g. headers or the links to the page itself

• Among the qualified pages, a score is computed for each
 • PageRank score
Part 1. Large Scale Data Analytics
1. Web-Scale Link Analysis and Social Network Analysis
 Efficient Computation of PageRank

Problems in performing PageRank

• To compute the PageRank for a Web graph
 • We should perform a matrix-vector multiplication of the order of 50 times
 • Until the vector is close to unchanged at one iteration

• The transition matrix of the Web M is very sparse
 • Representing it by all its elements is highly inefficient
 • We want to represent the matrix by only its nonzero elements
 • We want to reduce the amount of data that must be passed from the Map tasks to Reduce tasks

Representing Transition Matrices (1/2)
• The average Web page has about 10 out-links
 • We are analyzing a graph of 1.4 billion pages
 • Only one in 0.14 billion (140 million) entries is not 0
 • Can we list the location of the nonzero entries and their values?
 • If we use two 4-byte integers for coordinates (row#, col#) of an element
 • 16-bytes per nonzero entry
 • The space needed is linear of nonzero entries

Representing Transition Matrices (2/2)
• For the Web graph
 • The value will be 1 divided by the out-degree of the page

$M = \begin{bmatrix}
0 & 1/2 & 0 & 0 \\
1/3 & 0 & 1/2 & 0 \\
1/3 & 1/2 & 0 & 0 \\
1/3 & 0 & 1/2 & 0
\end{bmatrix}$

<table>
<thead>
<tr>
<th>Source (PR)</th>
<th>Degree</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(l)</td>
<td>3</td>
<td>B, C, D</td>
</tr>
<tr>
<td>B(m)</td>
<td>2</td>
<td>A, D</td>
</tr>
<tr>
<td>C(n)</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D(o)</td>
<td>2</td>
<td>B, C</td>
</tr>
</tbody>
</table>

Mapper generates
(key, value) = (destinations, current PR/degree)

E.g. for the source A, (B, 1/3), (C, 1/3), (D, 1/2)
For the source B, (A, m/2), (D, m/2)
For the source C, (C, n)
For the source D, (B, o/2), (C, o/2)

Reducer calculates
Add values

$\nu' = \beta M \nu + (1 - \beta) e / n$

PageRank Iteration Using MapReduce

• One iteration of the PageRank algorithm involves,
 $\nu' = \beta M \nu + (1 - \beta) e / n$

• First round of MapReduce
 • Calculate $M \nu$ and store the result to ν'

• Second round of MapReduce
 • For each component, multiply β and add $(1 - \beta) / n$
PageRank Iteration Using MapReduce

\[v' = \beta Mv + (1 - \beta) e / n \]

- If \(n \) is small enough that each Map task can store the full vector \(v \) in main memory
- And \(v' \)

- For the Web, \(v \) is much too large to fit in main memory
 - We need striping
 - \(M \) into vertical stripes and break \(v \) into corresponding horizontal strips

Architecture of a Spam Farm

- **Spam Farm**
 - A collection of pages whose purpose is to increase the PageRank of a certain page or pages

- From the point of view of the spammer, the Web is divided into two parts
 - **Inaccessible pages**
 - The pages that the spammer cannot affect
 - **Accessible pages**
 - Those pages that, while they are not controlled by the spammer, can be affected by the spammer

Understanding Spam Farm (1/2)

- Setting the links to the target page
 - Without link from outside, the spam farm is not useful
 - e.g. Blogs or news papers
 - Comments like “I agree. Please see my article at www.mySpamFarm.com”

Understanding Spam Farm (2/2)

- There is one page \(i \), the target page
 - Spammer attempts to place as much PageRank as possible

- There are a large number of \(m \) supporting pages
 - Accumulate the portion of the PageRank that is distributed equally to all pages
 - The fraction \(1/m \) of the PageRank that represents surfers going to a random page
 - Prevent the PageRank of \(i \) from being lost
 - Note that all of the supporting pages links only to \(i \)
Analysis of a Spam Farm (1/6)

• A taxation parameter β
 • The fraction of a page’s PageRank that gets distributed to its successors at the next round

• Let there be,
 • n pages on the Web in total
 • A target page t
 • m supporting pages

Analysis of a Spam Farm (2/6)

• Let x be the amount of PageRank contributed by the accessible pages
 • x is the sum over all accessible page p with a link to t of the PageRank of p times β divided by the number of successors of p
 • Finally, let y be the unknown PageRank of t

Analysis of a Spam Farm (3/6)

• The PageRank of each supporting page
 • $\beta m(\beta y/m+(1-\beta)/n)$

• First term represents the contribution from t
 • βy is distributed to t’s successors

• Second term is the supporting page’s share of the fraction $1-\beta$ of the PageRank that is divided equally among all pages on the Web

Analysis of a Spam Farm (4/6)

• PageRank of y of target page t is (1)+(2)+(3)
 1. Contribution x from outside
 2. β times the PageRank of every supporting page $\beta m(\beta y/m+(1-\beta)/n)$
 3. $(1-\beta)/n$, the share of the fraction $1-\beta$ of the PageRank that belongs to t

This amount is negligible

Analysis of a Spam Farm (5/6)

• From (1) and (2),
 \[
 y = \frac{x}{1-\beta} \cdot \frac{\beta y}{n} + \frac{x}{1-\beta} \cdot \frac{\beta(1-\beta)}{n} \\
 y = \frac{x}{1-\beta} \cdot c \\
 \text{Where} \quad c = \frac{\beta y}{m} + \frac{\beta(1-\beta)}{n}
 \]

Analysis of a Spam Farm (6/6)

• If we choose $\beta=0.85$, then $1/(1-\beta^2)=3.6$
 • $c = \beta y + \beta(1-\beta)/n = 0.46$

• The structure has amplified the external PageRank contribution by 360%

• Also, it obtained an amount of PageRank that is 46% of the fraction of the Web, m/n, that is in the spam farm
Example

- Suppose that both the PageRank and TrustRank were computed
- Teleport set was page B and D
- Which nodes are not the link spams?
- Is there any link spam?

<table>
<thead>
<tr>
<th>Web Page</th>
<th>PageRank</th>
<th>TrustRank</th>
<th>SpamMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/9</td>
<td>56/210</td>
<td>0.229</td>
</tr>
<tr>
<td>B</td>
<td>2/9</td>
<td>56/210</td>
<td>-0.264</td>
</tr>
<tr>
<td>C</td>
<td>2/9</td>
<td>56/210</td>
<td>0.186</td>
</tr>
<tr>
<td>D</td>
<td>2/9</td>
<td>56/210</td>
<td>-0.264</td>
</tr>
</tbody>
</table>

Combatting Link Spam

- Detecting and eliminating link spam have been critical for search engines
 - Just as it was critical to eliminate term spam in the previous decade
- Detecting particular structures
 - Spam farm
 - One page links to a very large number of pages
 - Each of which links back to it

TrustRank

- TrustRank is a topic-sensitive PageRank
 - “topic” is a set of pages believed to be trustworthy (not spam)
- Develop a suitable teleport set of trustworthy pages
 - Let humans examine a set of pages and decide which of them are trustworthy
- Pick a domain whose membership is controlled
 - University pages
 - .mil, or .gov

Calculating TrustRank (1/2)

- Then the topic-sensitive PageRank for S is the limit of the iteration,

\[v' = \beta Mv + (1 - \beta) e_S / |S| \]

- M is the transition matrix of the Web, and $|S|$ is the size of set S.
Calculating TrustRank (2/2)

- Suppose we use $\beta=0.8$, and our trust rank is represented by the teleport set (trustworthy pages) $S = \{B, D\}$.

\[
\begin{pmatrix}
0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 \\
\end{pmatrix}
\]

B and D get a higher PageRank than before.

Spam Mass

- Measures the fraction of its PageRank that comes from spam for each page.
- For an arbitrary page p, there are:
 - PageRank r
 - TrustRank t
 - Computing the TrustRank based on some teleport set of trustworthy pages
 - The spam mass $\frac{(r - t)}{r}$

Example

- Suppose that both the PageRank and TrustRank were computed.
- Teleport set was page B and D.
- Which nodes are not the link spams?
- Is there any link spam?

<table>
<thead>
<tr>
<th>Web Page</th>
<th>PageRank</th>
<th>TrustRank</th>
<th>SpamMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/9</td>
<td>54/210</td>
<td>0.229</td>
</tr>
<tr>
<td>B</td>
<td>2/9</td>
<td>59/210</td>
<td>-0.264</td>
</tr>
<tr>
<td>C</td>
<td>2/9</td>
<td>38/210</td>
<td>0.186</td>
</tr>
<tr>
<td>D</td>
<td>2/9</td>
<td>59/210</td>
<td>-0.264</td>
</tr>
</tbody>
</table>

Questions?